树莓派 5 AI 套件(Hailo-8L)使用教程

系列文章目录

目录

系列文章目录

前言

一、人工智能模块功能

二、安装

三、入门

3.1 前提条件

3.2 硬件设置

3.3 演示

3.3.1 目标检测

3.3.2 图像分割

3.3.3 姿势估计

四、更多资源

五、产品简介


前言

64bd1406616d7bb11309c48e2504671e.png
The Raspberry Pi AI Kit

        Raspberry Pi AI 套件将 Raspberry Pi M.2 HAT+ 与 Hailo AI 加速模块捆绑在一起,供 Raspberry Pi 5 使用。套件包含以下内容:

  • 包含神经处理单元(NPU)的 Hailo AI 模块
  • Raspberry Pi M.2 HAT+,用于将 AI 模块连接到 Raspberry Pi 5
  • 预装在模块和 M.2 HAT+ 之间的散热垫
  • 安装硬件套件
  • 16 毫
### Hailo-8 和 K3588 的技术规格与应用场景 #### Hailo-8 技术规格 Hailo-8 是一款专为边缘计算设计的人工智能处理器,具有高效能功耗比。该芯片能够提供高达每秒26万亿次运算(TOPS),同时保持较低的功率消耗,在典型工作条件下仅需几瓦特电力[^1]。 ```python # 示例代码展示如何查询Hailo-8性能参数 def get_hailo_8_specs(): specs = { "max_ops": "26 TOPS", "power_consumption": "< few watts" } return specs ``` #### K3588 技术规格 K3588 属于NVIDIA Jetson系列嵌入式模块之一,基于Orin SoC构建。这款产品集成了强大的GPU核心以及多个专用加速器单元,可实现最高可达275 TOPS的AI算力输出;支持多种接口标准以便连接外部传感器和其他组件[^2]。 ```python # 示例代码展示如何获取K3588的主要特性 def get_k3588_features(): features = [ f"NVIDIA Orin SoC with up to 275 TOPS AI performance", "Supports multiple interface standards for peripherals" ] return "\n".join(features) ``` #### 应用场景对比 针对高风险环境下的实时处理需求,如自动驾驶汽车或工业自动化领域内的复杂任务执行,这两种解决方案都能表现出色。然而具体选择取决于项目特定的要求: - **Hailo-8 更适合资源受限但又需要强大推理能力的小型化终端设备**; - **而K3588则适用于更广泛的任务负载范围,并且当涉及到多模态数据融合时表现尤为突出** 。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值