mjlab & Isaac Lab & MuJoCo-Warp 人形机器人强化学习全身控制教程

#AgenticAI·十月创作之星挑战赛#

系列文章目录

目录

系列文章目录

前言

一、快速入门

二、安装

三、训练示例

3.1 速度跟踪

3.2 动作模仿

3.3 训练与播放


前言

        mjlab融合了Isaac Lab成熟的API与业界领先的MuJoCo物理引擎,为强化学习机器人研究及仿真到现实部署提供轻量级、模块化的抽象解决方案。

⚠️ 测试版预览mjlab 处于积极开发阶段。测试期间可能出现破坏性变更和功能缺失,目前尚未发布稳定版本。PyPI 上的包仅为快照版本——如需获取最新修复与改进,请从源代码或 Git 安装。


一、快速入门

        mjlab 需要 NVIDIA GPU 进行训练(通过 MuJoCo Warp)。macOS 仅支持评估,且速度显著较慢。

# Install uv if you haven't already
curl -LsSf https://astral.sh/uv/install.sh | sh

        运行演示程序(无需安装):

uvx --from mjlab --with "mujoco-warp @ git+https://github.com/google-deepmind/mujoco_warp@486642c3fa262a989b482e0e506716d5793d61a9" demo

        这将启动一个交互式查看器,其中预训练的Unitree G1代理正在MuJoCo Warp中追踪参考舞蹈动作。

二、安装

        从源代码安装(测试版期间推荐):

git clone https://github.com/mujocolab/mjlab.git
cd mjlab
uv run demo

        来自PyPI(测试版快照):

uv add mjlab "mujoco-warp @ git+https://github.com/google-deepmind/mujoco_warp@486642c3fa262a989b482e0e506716d5793d61a9"

三、训练示例

3.1 速度跟踪

        训练Unitree G1人形机器人在平坦地形上执行速度指令:

MUJOCO_GL=egl uv run train Mjlab-Velocity-Flat-Unitree-G1 --env.scene.num-envs 4096

        在训练过程中评估策略(从Weights & Biases获取最新检查点):

uv run play --task Mjlab-Velocity-Flat-Unitree-G1-Play --wandb-run-path your-org/mjlab/run-id

3.2 动作模仿

        训练 Unitree G1 模仿参考动作。mjlab 使用 WandB 管理参考动作数据集:

  1. 在 WandB 工作区创建名为 Motions 的注册表集合
  2. 设置 WandB 实体:
    export WANDB_ENTITY=your-organization-name
  3. 处理并上传运动文件:
    MUJOCO_GL=egl uv run src/mjlab/scripts/csv_to_npz.py \
      --input-file /path/to/motion.csv \
      --output-name motion_name \
      --input-fps 30 \
      --output-fps 50 \
      --render  # Optional: generates preview video

    注:有关详细的运动预处理说明,请参阅BeyondMimic文档。

3.3 训练与播放

MUJOCO_GL=egl uv run train Mjlab-Tracking-Flat-Unitree-G1 --registry-name your-org/motions/motion-name --env.scene.num-envs 4096

uv run play --task Mjlab-Tracking-Flat-Unitree-G1-Play --wandb-run-path your-org/mjlab/run-id

### NVIDIA Isaac Lab 中的人形机器人介绍 NVIDIA Isaac Lab 提供了一个 GPU 加速、性能优化的应用程序,专为运行数千个用于机器人学习的并行仿真而设计[^2]。该环境允许开发者在高度逼真的虚拟场景中训练和验证人形机器人的行为模式。 #### 主要特点 - **高保真度模拟**:Isaac Lab 支持创建复杂且真实的物理环境来测试各种条件下的机器人表现。 - **大规模并发实验**:能够同时启动多个仿真实验,从而加快迭代速度并提高效率。 - **集成AI工具链**:内置了多种预训练模型以及库文件,方便快速部署新算法或调整现有方案[^1]。 ### NVIDIA Isaac Sim 人形机器人应用案例 借助于 NVIDIA Isaac Sim 平台及其扩展模块(如 Isaac Manipulator 和 Isaac Perceptor),可以实现更广泛的任务处理能力: #### 工业自动化领域中的协作操作 通过引入具备高级感知能力和灵活操控技巧的人形机器人,在工厂车间内协助工人完成装配线上的精细作业或是危险区域内的维护检修工作。这些设备可以在不牺牲精度的情况下显著提升生产率,并减少人为错误带来的风险。 #### 家庭服务类应用场景 对于家庭护理和支持老年人独立生活的任务来说,配备有情感识别系统的友好型人形机器人显得尤为重要。它们不仅能在日常生活中提供帮助,比如拿取物品或者提醒服药时间;还可以作为社交伴侣陪伴老人聊天解闷,改善心理健康状况。 ```python import isaac_sim as sim def setup_humanoid_robot(): """配置一个人形机器人实例""" robot = sim.create_actor('humanoid') # 设置初始姿态和其他参数... return robot if __name__ == "__main__": humanoid = setup_humanoid_robot() while True: action = get_next_action() # 获取下一个动作指令 humanoid.execute(action) # 执行指定的动作序列 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值