OTU/ASV/Feature tabel 表格 过滤 相对丰度 微生物

本文介绍了如何从微生物研究文章中理解材料方法,包括数据导入、低读数去除、属级过滤、相对丰度转换,并详细阐述了过滤标准和保留高丰度属群的策略。通过示例展示了如何使用Hmisc包进行操作,最终导出筛选后的数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自己看微生物 扩增子或宏基因组文章的材料方法,找过滤标准

然后转化成相对丰度

#导入数据 #行=样本 列=OTU

data=read.csv("L6.csv",row.names = 1,header=T)

#ASVs with fewer than 10 reads were removed.
data[data < 10] <- 0

#过滤方法
library(Hmisc)
#我处理的属水平
genus <- data

#相对丰度转化
A=genus  #行=样本 列=OTU
C=A/rowSums(A)
genus=t(C)

#可选事先过滤一些低丰度或低频的类群,行=OTU
#例如只保留相对丰度总和高于 0.01% 的属
genus <- genus[which(rowSums(genus) >= 0.0001), ] 

genus1 <- genus
#大于0的赋值为1
genus1[genus1>0] <- 1
#上一步大于0变成1后,下一步合算1多少个,保留下来
genus <- genus[which(rowSums(genus1) >=52 ), ]  
#例如只保留在 52个及以上样本中出现的属 按20%计算

write.table(genus,"L6_filter_0.0001.csv",sep=",",row.names=TRUE,col.names=TRUE)

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值