华为:LLM的注意力机制压缩算法

在这里插入图片描述

📖标题:RAZORATTENTION: EFFICIENT KV CACHE COMPRESSIONTHROUGH RETRIEVAL HEADS
🌐来源:arXiv, 2407.15891

🛎️文章简介

🔸研究问题:随着输入长度的增加,大语言模型(LLM)中的键值(KV)缓存成为部署长上下文模型的主要瓶颈。
🔸主要贡献:论文提出了RazorAttention算法,将KV缓存减少了70%以上,并且对性能没有明显影响。

📝重点思路

🔺相关工作

🔸量化:是一种经典而有效的神经网络压缩方法,包括FlexGen、Atom和QServe等方案。
🔸令牌丢弃:假设并非所有键值对在自注意力计算中都是必需的,因此可以通过识别和删除不重要的KV来节省内存使用。
🔸非MHA注意力:侧重于通过在注意力头之间共享缓存来减少KV缓存,包括MQA、GQA和MLA等方案。

🔺论文方案

🔸受到注意力头功能启发,首先识别检索头,包含“回声头”和“归纳头”两种影响长上下文的注意力头。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值