英伟达:LLM预训练自动数据混合

在这里插入图片描述

📖标题:CLIMB: CLustering-based Iterative Data Mixture Bootstrapping for Language Model Pre-training
🌐来源:arXiv, 2504.13161

🌟摘要

🔸预训练数据集通常从网络内容中收集,缺乏固有的领域划分。例如,像Common Crawl这样广泛使用的数据集不包括显式的域标签,而手动整理像The Pile这样的标记数据集是劳动密集型的。因此,确定最佳的预训练数据混合仍然是一个具有挑战性的问题,尽管它对预训练性能有显著的好处。
🔸为了应对这些挑战,我们提出了基于聚类的迭代数据混合自举(CLIMB),这是一种在预训练设置中发现、评估和改进数据混合的自动化框架。具体来说,CLIMB在语义空间中嵌入和聚类大规模数据集,然后使用较小的代理模型和预测器迭代搜索最佳混合。当使用这种混合物对400B代币进行连续训练时,我们的1B模型比最先进的Llama-3.2-1B高出2.0%。此外,我们观察到,对特定领域(如社会科学)进行优化比随机抽样提高了5%。
🔸最后,我们介绍ClimbLab和ClimbMix。ClimbLab是一个经过过滤的1.2万亿代币语料库,包含20个集群,作为研究平台。ClimbMix是一个紧凑而强大的4000亿代币数据集,旨在实现高效的预训练,在同等的代币预算下提供卓越的性能。我们分析最终的数据混合,阐明最佳数据混合的特征。项目在https://research.nvidia.com/labs/lpr/climb/

🛎️文章简介

🔸研究问题:如何在大规模预训练语言模型中优化数据混合,以有效平衡通用知识和领域专长?
🔸主要贡献:论文提出了一种名为CLIMB的框架,通过迭代的数据混合优化,自动发现和优化数据混合,显著提高语言模型的性能。

📝重点思路

🔸使用无监督集群方法将数据源中的文档聚类,以便在特征空间中区分不同领域的数据。
🔸通过引入轻量级代理模型进行混合权重的优化,并使用预测器在每次迭代中逐步改进数据混合的质量。
🔸将数据混合权重的搜索建模为双层优化问题,通过迭代自举策略来探索和评估数据组合。
🔸在每次迭代中,通过对候选混合物进行提议、修剪和精炼来优化多样性和领域相关性。

🔎分析总结

🔸实验结果表明,CLIMB在多个推理基准测试中表现优于所有基线数据混合方法,尤其是在350M和1B参数的模型中,准确率显著提高。
🔸通过优化有限的训练预算,CLIMB能够在特定任务的验证集上实现出色的性能,表明其具有良好的泛化能力。
🔸迭代的数据混合搜索能够动态调整数据组合,使得模型在领域特定任务上表现更佳,同时保留通用能力。

💡个人观点

论文的核心在于自动化数据混合优化方法,克服了传统静态混合策略的局限性,使得模型能够在没有预定义领域标签的情况下,通过自我迭代和学习不断提升性能。

🧩附录

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值