从基因组提取启动子(任意区间)序列

一、gff文件准备

1、准备基因gff文件

从数据库下载

2、excel整理获得输入gff文件

(1)计算正负链:比对结果end-start>0,为正链,反之负链。

(2)在正链中,将小数值减2000(向前2000bp)为一列,向后加200(向后200bp)为一列,并且删掉原来的数值;在负链中,将大数值加2000,小数值减200,得到的是启动子区域的位置。(启动子大小自己确定)

(3)这样的处理-2000可能会出现负数,将负数改成1就好。

(4)最终格式如下:抽取序列时,都是小数值在前,保存为gff.txt

二、从基因组抽取启动子序列

利用scriptExtract_seq_previ_termi_v4.py,可以根据位置信息提取基因组的相关序列。

经过excel整理后,其实运行代码命令如下:

python2 Extract_seq_previ_termi_v2.py genome.fa gff.txt 0 0
#!/usr/bin/env python
from __future__ import division

print '''
	Usage: python Extract_seq_previ.py  genome.fa  gff  previ_length termi_length
	       gff format:NC_001147.6     159548  160594  -	genename
	       length: bp
'''

import sys,re

IN1=open(sys.argv[1],'r') # genome file
IN2=open(sys.argv[2],'r') # glimmer file format:NC_001147.6	159548	160594	-
kb1=int(sys.argv[3].strip()) # previous N bp
kb2=int(sys.argv[4].strip()) #termi N bp
OUT=open("fa.out",'w')



def Max(i,j):
	if int(i)>=int(j):
		return int(j)
	else:
		return int(i)



def Seqin(fa):
	seq_name=[]
	seqs=[]
	each_seq=""
	for eachline in fa:
		eachline=eachline.rstrip()
		if eachline.startswith(">"):
			seq_name.append(eachline.strip(">"))
			if each_seq:
				seqs.append(each_seq)
				each_seq=""
		else:
			each_seq+=eachline
	seqs.append(each_seq)
	return seq_name,seqs

def SeqConvert(seq):
	Convert={"A":"T","C":"G","T":"A","G":"C","a":"t","t":'a',"c":'g',"g":"c","N":"N","n":"n"}
	return ''.join(map(lambda x: Convert[x],seq))[::-1]

seq_name=[]
seqs=[]
seq=""
seq_name,seqs=Seqin(IN1)

#for i in seq_name:
#	print ">"+i+'\n'+str(len(seq[seq_name.index(i)]))

split=[]

for eachline in IN2:
	split=eachline.rstrip().split('\t')
	try:
		if split[3]=="-":
			seq=seqs[seq_name.index(split[0])][(int(split[1])-Max(int(split[1]),kb2)):(int(split[1])-1)].lower()+seqs[seq_name.index(split[0])][(int(split[1])-1):(int(split[2]))].upper()+seqs[seq_name.index(split[0])][(int(split[2])):(int(split[2])+kb1)].lower()
			seq=SeqConvert(seq)
		else:
			seq=seqs[seq_name.index(split[0])][(int(split[1])-Max(int(split[1]),kb1)):(int(split[1])-1)].lower()+seqs[seq_name.index(split[0])][(int(split[1])-1):(int(split[2]))].upper()+seqs[seq_name.index(split[0])][int(split[2]):(int(split[2])+kb2)].lower()	
		OUT.write(">"+'_'.join([split[4],str(kb1),str(kb2)])+'\n'+seq+'\n')
	except IndexError:
                print "pass"	


IN1.close()
IN2.close()
OUT.close()
		
	

三、从fasta文件,根据ID抽取序列

 只选择其中几个启动子,可以用script extract_fasta_by_id.py根据基因的名称提取启动子序列

(1)准备基因ID_list

注意ID与fasta的分时相同

(2)根据ID_list抽取对应fasta序列

python2 extract_fasta_by_id.py id.txt(需要抽取的Gene名称) genome.fa(序列文件) seq.fa(结果) 
#! /usr/bin/env python
import sys,re

IN1=open(sys.argv[1],'r')
IN2=open(sys.argv[2],'r')
OUT=open(sys.argv[3],'w')

lst=[]
k=0
for eachline in IN1:
	eachline=eachline.rstrip()
	lst.append(eachline)

for eachline in IN2:
	m=re.search("(>(\S+))",eachline)
	if m:
		name=m.group(2)
		if name in lst:
			k=1
			OUT.write("%s%s\n"%(">",m.group(2)))
		else:k=0
	else:
		if k==1:
			
			OUT.write(eachline)
		
	

IN1.close()
IN2.close()
OUT.close()

import sys
from Bio import SeqIO
from Bio.Seq import Seq
from collections import defaultdict

# 解析GFF文件,提取基因位置信息
def parse_gff(gff_file, feature_type='gene'):
    genes = defaultdict(dict)
    with open(gff_file, 'r') as f:
        for line in f:
            if line.startswith('#'):  # 跳过注释行
                continue
            fields = line.strip().split('\t')
            seqid, source, feature, start, end, score, strand, frame, attributes = fields
            if feature == feature_type:  # 只提取特定类型的注释,如'gene'
                attributes_dict = {key_value.split('=')[0]: key_value.split('=')[1] for key_value in attributes.split(';')}
                gene_id = attributes_dict.get('ID', None)
                if gene_id:
                    genes[seqid][gene_id] = {'start': int(start), 'end': int(end), 'strand': strand}
    return genes

# 从FASTA文件中提取指定基因组区域
def extract_sequence(genome_file, seqid, start, end):
    genome = SeqIO.to_dict(SeqIO.parse(genome_file, 'fasta'))
    sequence = genome.get(seqid, None)
    if sequence:
        return sequence.seq[start-1:end]
    return None

# 提取启动子区域
def extract_promoter_sequence(genome_file, gff_file, gene_list_file, promoter_length, feature_type='gene'):
    # 读取GFF文件中的基因注释
    genes = parse_gff(gff_file, feature_type)
    
    # 读取基因ID列表
    with open(gene_list_file, 'r') as f:
        gene_list = [line.strip() for line in f.readlines()]
    
    promoters = []
    
    # 提取启动子序列
    for seqid, gene_info in genes.items():
        for gene_id, gene_data in gene_info.items():
            if gene_id in gene_list:
                start = gene_data['start']
                end = gene_data['end']
                strand = gene_data['strand']
                
                # 启动子区域长度从基因的起始位置计算
                if strand == '+':
                    promoter_start = max(1, start - promoter_length)  # 防止负值
                    promoter_end = start - 1
                else:
                    promoter_start = end + 1
                    promoter_end = end + promoter_length
                
                promoter_seq = extract_sequence(genome_file, seqid, promoter_start, promoter_end)
                
                if promoter_seq:
                    promoters.append(f">{gene_id}_promoter\n{promoter_seq}")
    
    return promoters

# 写入FASTA文件
def write_fasta(promoters, output_file):
    with open(output_file, 'w') as f:
        for promoter in promoters:
            f.write(promoter + '\n')

# 主函数
def main():
    if len(sys.argv) != 6:
        print("用法: python script.py <gff_file> <genome_file> <gene_list_file> <promoter_length> <output_file>")
        sys.exit(1)
    
    # 从命令行参数中获取文件路径和长度
    gff_file = sys.argv[1]
    genome_file = sys.argv[2]
    gene_list_file = sys.argv[3]
    promoter_length = int(sys.argv[4])
    output_file = sys.argv[5]

    promoters = extract_promoter_sequence(genome_file, gff_file, gene_list_file, promoter_length)
    write_fasta(promoters, output_file)
    print(f"FASTA文件已保存到{output_file}")

if __name__ == '__main__':
    main()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值