如何限制用户的CPU与内存调用

写在前面

如果你恰好有一台有root权限的共享服务器独享服务器,那么在日常的使用过程中,那么你可能需要学会创建、管理服务器中的所有账号,以便于你的同伴与你共同使用。此前我们制作过服务器账号管理的基础代码:用户管理命令(useradd, passwd, userdel, su)。这时候如果一个一个用户创建,既耗时又耗力;或者在很多情况下需要限制各个用户对计算资源的调用情况,也是一个比较复杂的问题。那有没有办法可以相对便捷的完成这个需求呢?

本篇推文给出了一个具体实例,它可以实现:

(1)循环创建多个用户

(2)为每个用户设置随机密码

(3)限制计算资源(如内存、进程、CPU使用率等)

本教程在Linux环境中进行演示,如果你对下面的教程比较迷茫,那么你可以先行学习编程教程:

十小时学会Linux

生信Linux及服务器使用技巧

R语言基础学习手册

管理账号

一、工具包安装

如果你还没有安装pwgen(一个生成随机密码的工具)以及cgroup-tools,可以使用以下命令进行安装

sudo apt install pwgen
sudo apt-get install cgroup-tools

二、资源限制

1、版本查看

# 查看目前所有组
getent group

#通过下面这条命令来查看当前系统使用的 Cgroups V1 还是 V2,不同版本对应设置命令有区别
stat -fc %T /sys/fs/cgroup
#V1版本
#本教程基于V1版本进行演示
tmpfs

2、默认资源查看

#查看任务Id为338283的任务cpu默认所属组
cat /proc/338283/cgroup

#查看任务Id为338283的任务cpu消耗情况
#在bash中启动一个死循环来消耗cpu,正常情况下应该使用100%的cpu
while :; do echo test > /dev/null; done

3、配置文件准备

#配置文件1,主要进行cpu的设置,用于识别步骤4中的/etc/cgconfig.conf文件
#打开编辑文件
sudo nano /etc/systemd/system/cgconfig.service
#输入以下信息
[Unit] 
Description=Control Group configuration service 
After=systemd-udevd.service local-fs.target 

[Service] 
Type=forking 
ExecStart=/sbin/cgconfigparser -l /etc/cgconfig.conf 
ExecReload=/sbin/cgconfigparser -l /etc/cgconfig.conf 
ExecStop=/sbin/cgconfigparser -k /etc/cgconfig.conf 
RemainAfterExit=yes 

[Install]
WantedBy=multi-user.target

#配置文件2,主要进行用户和cgroup匹配,用于识别步骤4中的/etc/cgrules.conf文件
#打开编辑文件
sudo nano /etc/systemd/system/cgrulesengd.service
#输入以下信息
[Unit]
Description=Control Group rules daemon
After=systemd-udevd.service local-fs.target

[Service]
Type=forking
ExecStart=/sbin/cgrulesengd
ExecReload=/sbin/cgrulesengd
ExecStop=/sbin/cgrulesengd
RemainAfterExit=yes 

[Install]
WantedBy=multi-user.target

4、新建用户并进行资源限制

# 定义用户信息
# 创建用户并设置资源限制
users="user1 user2 user3"
for user in $users; do
    # 设置随机12位密码
    password=$(pwgen 12 1)
    # 创建用户、设置家目录
    sudo useradd -m -G testuser -s /bin/bash "$user"
    # 修改用户密码
    echo "$user:$password" | sudo chpasswd
    # 输出用户名和密码到文件
    echo "Username: $user; Password: $password" >> ~/project/07_adduser/testuser_key.txt

    # 为用户设置资源限制(ulimit)
    sudo bash -c "echo 'ulimit -m 104857600' >> /home/$user/.bashrc"  # 设置物理内存限制为 100GB
    sudo bash -c "echo 'ulimit -v 209715200' >> /home/$user/.bashrc"  # 设置虚拟内存限制为 200GB
    sudo bash -c "echo 'ulimit -u 3000' >> /home/$user/.bashrc"  # 设置进程数

    # 创建一个 cgroup 组
    sudo mkdir /sys/fs/cgroup/cpu,cpuacct/${user}
    
    #在每一个 100 毫秒的时间周期内,user_limit 控制组内的进程所能使用的 CPU 时间被严格限制在 13 毫秒以内。从资源使用比例的角度计算,该控制组内进程可使用的 CPU 资源仅占总 CPU 资源的 13%(即 13 毫秒 / 100 毫秒)
    echo 100000 | sudo tee /sys/fs/cgroup/cpu,cpuacct/${user}/cpu.cfs_period_us
    echo 13000 | sudo tee /sys/fs/cgroup/cpu,cpuacct/${user}/cpu.cfs_quota_us
    cat /sys/fs/cgroup/cpu,cpuacct/${user}/cpu.cfs_period_us
    cat /sys/fs/cgroup/cpu,cpuacct/${user}/cpu.cfs_quota_us
    echo "设置完成:$user 的虚拟内存、物理内存和进程数已限制。请重新登录确认"
done

#cgroup资源限制永久生效
# 1.编辑 sudo vi /etc/cgconfig.conf 文件,添加以下内容:
group  user1 {
  cpu{
      cpu.cfs_period_us = 100000;
      cpu.cfs_quota_us = 13000;
  }
}

group  use2 {
  cpu{
      cpu.cfs_period_us = 100000;
      cpu.cfs_quota_us = 13000;
  }
}

group  user3 {
  cpu{
      cpu.cfs_period_us = 100000;
      cpu.cfs_quota_us = 13000;
  }
}
# 2.编辑sudo vi /etc/cgrules.conf 文件,添加以下内容,
user1 cpu /user1
user2 cpu /user2
user3 cpu /user3
      
# 3.重启cgconfig服务
sudo systemctl daemon-reload
sudo systemctl enable cgconfig
sudo systemctl restart cgconfig
# 4、重启cgrulesengd服务
sudo systemctl enable cgrulesengd.service
sudo systemctl restart cgrulesengd.service

5、检查资源限制是否正确

#登录user1账号后查看物理内存和进程数情况
ulimit -a

#在bash中启动一个死循环来消耗cpu,查看cpu是否得到控制
while :; do echo test > /dev/null; done

当然你也可以时不时地在终端直接用命令看看各个用户占用了多少内存:

ps aux --sort=-%mem | awk 'NR>1 {print $1, $6/1024}' | \
    awk '{a[$1]+=$2} END {for (user in a) print user, a[user]/1024 " GB"}' | \
    sort -k2 -n -r

6、用户删除和cgroup删除

#删除user1用户
sudo userdel -r -f user1
#删除user1的cgroup组
sudo rmdir  /sys/fs/cgroup/cpu,cpuacct/user1/
### 层自适应模型剪枝技术及其在机器学习中的实现 #### 方法概述 层自适应模型剪枝是一种优化神经网络结构的技术,旨在通过减少冗余参数来提高计算效率并降低存储需求。这种方法通常依赖于评估每一层的重要性,并移除那些对整体性能贡献较小的部分[^1]。 一种常见的方法是基于权重重要性的剪枝策略。该策略通过对每层的权重矩阵应用某种度量标准(如L1范数或泰勒展开近似),识别出哪些权值可以被安全删除而不显著影响模型精度[^2]。具体而言,在训练过程中引入稀疏正则化项可以帮助引导网络自动形成更紧凑的表示形式。 另一种方式则是利用梯度信息来进行动态调整。此过程涉及监测各层在整个迭代周期内的活跃程度变化情况,从而决定保留或者裁减特定节点/通道的数量比例关系。这种机制能够更好地适配不同数据分布特性下的最佳架构配置方案。 #### 实现细节 以下是采用Python与PyTorch框架的一个简单示例代码片段展示如何执行基本版本的Layer Adaptive Pruning: ```python import torch import torch.nn as nn def prune_layer(layer, amount=0.2): """Prune a given layer by specified percentage.""" mask = torch.ones_like(layer.weight) num_params_to_prune = int(amount * mask.numel()) # Calculate the importance score (e.g., L1 norm of weights). scores = torch.abs(layer.weight.data).view(-1) _, indices = torch.topk(scores, k=num_params_to_prune, largest=False) flat_mask = mask.view(-1) flat_mask[indices] = 0. pruned_weights = layer.weight.data * mask layer.weight.data.copy_(pruned_weights) class SimpleCNN(nn.Module): def __init__(self): super(SimpleCNN, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) self.fc = nn.Linear(32*7*7, 10) def forward(self, x): out = F.relu(self.conv1(x)) out = F.max_pool2d(out, 2) out = out.view(out.size(0), -1) out = self.fc(out) return out model = SimpleCNN() print("Before pruning:") print(model.conv1.weight) # Apply pruning to conv1 layer. prune_layer(model.conv1, amount=0.3) print("\nAfter pruning:") print(model.conv1.weight) ``` 上述脚本定义了一个小型卷积神经网络,并展示了针对`conv1`这一层实施修剪操作的具体流程。这里采用了固定百分比的方式去除部分连接权重;实际应用场景下可能还需要考虑更多因素比如全局敏感性分析等高级技巧以进一步提升效果表现。 #### 结论 综上所述,层自适应模型剪枝不仅有助于简化复杂的深度学习模型,还能有效节省资源消耗。然而值得注意的是,尽管这些技术提供了强大的工具用于探索高效解决方案空间,但在实践中仍需谨慎处理各种潜在风险点以免损害最终预测质量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值