YOLO V8

文章介绍了如何利用TensorRT加速YOLOv8模型的推理过程,通过降低精度如FP16,实现模型的快速部署。提供了YOLOv8的官方仓库和第三方TensorRT支持仓库,以及量化操作提升性能至1000+FPS的教程。此外,还提及了无人船感知数据集的相关信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于YOLO v8

关于TensorRT

TensorRT是NVIDIA公司推出的GIE(GPU Inference Engine)C++库,其主要目的是要提高深度神经网络在其公司硬件产品上的推理速度,主要方式是通过更低精度的运算、神经网络计算结构的调整优化等。

深度学习模型的训练包括两个阶段:前向推理并计算损失函数、后向梯度传播和参数更新。为了获得更准确的网络参数,模型的训练阶段参数精度要求较高,深度神经网络的参数需要使用32位浮点(Floating-point,FP32)计算并存储。模型训练完成后,只需要前向的推理步骤即可完成相关任务。在模型推理阶段,可以适当降低了模型参数的精度,加快模型推理的速度,对模型推理结果影响不大。

一种常用的方法是用半精度浮点(FP16)和8位整数(INT8)代替模型中的单精度值进行运算,用0-1二进制量化网络参数加速部分卷积神经网络模型的计算。Jetson Nano平台支持半精密浮点运算。半精度浮点运算速度是单精度浮点运算速度的两倍。在本节中,将使用半精确模型参数来减少目标检测模型的推理时间。

yolo v8 官方仓库

GitHub - ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > CoreML > TFLite

YOLO V8 TensorRT模型仓库,可转onnx,下载权重

GitHub - FeiYull/TensorRT-Alpha: 🔥🔥🔥TensorRT-Alpha supports YOLOv8、YOLOv7、YOLOv6、YOLOv5、YOLOv4、v3、YOLOX、YOLOR...🚀🚀🚀CUDA IS ALL YOU NEED.🍎🍎🍎It also supports end2end CUDA C acceleration and multi-batch inference.

TensorRT部署说明

TensorRT-Alpha - 知乎

yolo v8模型部署流程

yolov8 tensorrt模型加速部署[实战] - 知乎

yolo v8量化操作 

优化+量化,让你的YOLOv8获得1000+ FPS性能_zhuo-yoyowz的博客-CSDN博客

yolo v8操作教程

​​​YOLOV8最强操作教程._魔鬼面具的博客-CSDN博客

无人船数据集

无人船感知-数据集篇 - 知乎

### 魔傀面具相关的损失函数定义和实现 魔傀面具(Magic Puppet Mask, MPM)通常涉及图像分割或者对象检测中的掩码预测任务。为了提高模型性能并解决特定问题,如类别不平衡或不同大小目标之间的差异处理,可以采用多种优化策略。 #### 自适应阈值焦点损失(ATFL) 针对类别不平衡的问题,在YOLOv1到YOLOv7系列中引入了自适应阈值焦点损失(Adaptive Threshold Focal Loss, ATFL)。该方法通过调整难易样本权重来缓解正负样本比例失调带来的训练困难[^1]: ```python def atfl_loss(y_true, y_pred, alpha=0.25, gamma=2.0): """ 计算自适应阈值焦点损失 参数: y_true (tensor): 真实标签 y_pred (tensor): 模型预测概率分布 alpha (float): 权重因子,默认为0.25 gamma (float): 调节指数,默认为2.0 返回: tensor: 损失值 """ pt = tf.where(tf.equal(y_true, 1), y_pred, 1 - y_pred) loss = -alpha * (1 - pt)**gamma * tf.math.log(pt + 1e-9) return tf.reduce_mean(loss) ``` #### 尺寸敏感的边界框回归损失 考虑到大物体与小物体检测精度的不同需求,对于宽度(w)和高度(h),采用了特殊的计算方式以确保小尺寸的目标能够获得足够的关注。具体做法是对宽高差采取平方根运算后再求解均方误差(MSE)[^2]: ```python import tensorflow as tf def size_sensitive_bbox_reg_loss(true_boxes, pred_boxes): """ 计算尺寸敏感的边界框回归损失 参数: true_boxes (tensor): 真实边框坐标(xmin,ymin,xmax,ymax) pred_boxes (tensor): 预测边框坐标(xmin,ymin,xmax,ymax) 返回: tensor: 边界框回归损失值 """ # 提取真实和预测的中心点以及宽高 t_xc, t_yc, t_w, t_h = get_center_and_size(true_boxes) p_xc, p_yc, p_w, p_h = get_center_and_size(pred_boxes) # 对于 w 和 h 使用 sqrt 进行缩放 root_t_w = tf.sqrt(t_w) root_p_w = tf.sqrt(p_w) root_t_h = tf.sqrt(t_h) root_p_h = tf.sqrt(p_h) # MSE 损失 mse_loss = tf.keras.losses.MeanSquaredError() xc_loss = mse_loss(t_xc, p_xc) yc_loss = mse_loss(t_yc, p_yc) wh_loss = mse_loss(root_t_w, root_p_w) + mse_loss(root_t_h, root_p_h) total_loss = xc_loss + yc_loss + wh_loss return total_loss def get_center_and_size(boxes): """从给定的边框[xmin, ymin, xmax, ymax]提取中心位置及宽高""" xmin, ymin, xmax, ymax = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3] width = xmax - xmin height = ymax - ymin center_x = xmin + 0.5 * width center_y = ymin + 0.5 * height return center_x, center_y, width, height ``` 上述两种技术共同作用可以帮助提升魔傀面具有关应用的效果,特别是在存在显著尺度变化或多类别的场景下表现尤为明显。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值