无线网络的应用——无人机蜂群

本文介绍了无人机蜂群的概念及其在军事和民用领域的应用,重点讲解了自组织网络(Ad-Hoc)、移动自组织网络(MANET)和飞行自组网(FANET)这三种关键技术,强调了无人机蜂群的无中心、自主控制和恢复能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是对无人机蜂群相关技术的介绍


前言

        无人机在近些年来越来越火,不少动作影片,如:《天使陷落》等都出现过使用大量无人机进行作战的场景。而现实里也有许多例子,如2020年发生在伊朗的事件,除了在军事领域,其实在民用邻域最近也变得常见,如:节日期间的一些无人机高空表演等。那么在这背后又与无线网络的相关知识有着哪些联系呢?


提示:以下是本篇文章正文内容,下面内容仅供参考

1、无人机蜂群是什么?

       无人机蜂群,一般是指一组具备部分自主能力的无人机在有人或无人操作装置的辅助下,实现无人机间的实时数据通信、多机编队、协同调整,并可在操作员的指引下完成相应的指定任务。以无人机高空表演为例,就是大数量的无人机可以在飞行过程中,按照指令,摆出不一样的造型。

主要特点:
1.无中心:无人机蜂群中的任一无人机下线或失去功能都不会影响整个蜂群的功能。
2.自主控制:任一无人机只负责调控自己的运动,并可观察附近的个体完成实时协调。
3.蜂群恢复:当某无人机因外力掉队或改变位置,剩余无人机会快速形成一个新的稳定的蜂群结构以替代原先结构。

2、蜂群中常用技术介绍

0.自组织网络(Ad-Hoc)

       我们先来看看自组织网络的定义:自组网是一种移动通信和计算机网络相结合的网络,网络的信息交换采用计算机网络中的分组交换机制,用户终端是可以移动的便携式终端,自组网中每个用户终端都有路由器和主机两种功能。作为主机,终端需要运行各种面向用户的应用程序,如编辑器、浏览器等;作为路由器,终端需要运行相应的路由协议,根据路由策略和路由表完成数据分组的转发和路由维护工作,故要求节点实现合适的路由协议。

       说的简单点,自组网就是一群具有路由功能的主机构成的网络,这个网络中没有中心节点,可以理解成”为了某个特定目的,所建立起来的临时网络“。

1.移动自组织网络(MANET)

       这是实现蜂群网络的常见形式之一,移动自组织网络(Mobile Ad Hoc Network,MANET)是由具有无线通信功能的移动节点以及任意和临时性网络拓扑组成。

       作为自主网的一种,继承了自主网的特性,每个移动终端不仅能移动而且还具有路由器和主机两种功能。这两种功能使得移动端可以不依赖于设定的网络环境而开展自适应的组网,同时在这个自适应的组网环境下,每个移动端节点在进入和离开网络都不会导致整个网络崩溃

       移动自组网具有无需建立基础网络设施、可快速部署、高度抗损性强等特点,不管是在军事领域还是民用领域,都越来越受关注。

2.飞行自组网(FANET)

       这是另一种实现蜂群网络的形式,飞行自组网(Flying Ad Hoc Network,FANET),也称蜂群无人机自组网,是无人机蜂群协同调整的基础和前提,其性能将直接决定无人机能否实现协同调整。

       它的基本思想是:无人机作为网络的节点不完全取决于地面控制站或卫星等通信设施的控制,各个节点之间就可以完成相互控制指令转发、态势感知交换和情报搜索等,从而建立起一个 Ad-Hoc 网络。

       FANET可看成 是 MANET 的特殊情况,不仅有无线自组织网络自身的多跳性、自组织性、无中心等固有特性,还有一些与无人机相关的功能,例如由高速移动的节点引起的网络拓扑的快速变化、网络节点的稀疏性和网络异构性、网络节点对等和数据中继能力。无人机自组织网络(FANET)与移动自组织网络(MANET)、车载自组织网络(VANET)、民航航空自组织网络(AANET)的关系如下图 所示。
在这里插入图片描述
       FANET 可由控制中心、传感系统、卫星通信系统以及无人机蜂群组成,控制中心可以是空中或地面指挥中心,向无人机蜂群发出控制消息。传感系统包括地面和空中,主要由雷达系统负责收集地面或无人机发回的状态信息。控制中心利用移动 Adhoc 互联网络将指令发布到无人机蜂群,无人机蜂群在执行完相应的任务之后,将工作状态和运动信息等通过传感系统等反馈到控制中心。在此过程中,卫星系统为无人机组和任务目标提供位置数据。
在这里插入图片描述

总结

       本文主要简单介绍了无人机蜂群是什么,以及无人机蜂群常见的两种实现形式MANET、FANET,所使用的图片全部引用自参考资料2中,通过了解它们,也加深了对Ad-Hoc的认识,对其特性:多跳、无中心、临时性有了更加形象的理解。

参考资料

### 无人机路径规划算法综述 #### A* 算法 A* 是一种广泛应用的启发式搜索算法,在无人机路径规划中同样适用。此算法通过评估函数 \(f(n)=g(n)+h(n)\),其中\(g(n)\)是从起点到节点n的实际代价,而\(h(n)\)则是从节点n到目标的一个估计成本。这种方法能够有效地找到最短路径,并且可以通过调整权重来平衡探索未知区域和遵循已知良好路线之间的关系[^2]。 #### RRT (快速扩展随机树) 对于动态变化或高维空间内的路径寻找,RRT提供了一种有效的解决方案。它始于初始位置并向环境中随机抽样的新点生长分支直到接近终点为止;当遇到障碍物时会改变方向继续尝试连接其他可能的位置。这种策略特别适用于处理复杂多变的任务场景下的实时重规划需求。 #### 蚁群算法 由Dorigo M提出的蚁群算法模拟自然界蚂蚁觅食行为,利用虚拟的信息素机制引导个体做出决策形成集体智慧解决问题。每只“蚂蚁”按照一定概率选择下一个访问地点,并根据所经过路段的好坏更新沿途留下的标记强度;随着时间推移更优的选择会被更多次重复从而凸显出来成为最终方案的一部分。不过需要注意的是该方法在面对较大规模问题时可能会陷入局部最优解难以自拔。 #### 人工蜂群算法(ABC) 针对三维环境下存在大量不确定因素影响正常飞行的情况,研究者开发出了基于生物群体智能的人工蜂群模型用于指导无人机构建安全高效的航行轨迹。在这个过程中雇佣蜂负责探测周围潜在可行的方向,观察蜂则依据前者反馈回来的情报决定是否加入共同开拓新的领域还是留在原地等待更好的机会来临。整个流程不断循环往复直至满足既定条件结束计算得出结果[^3]。 ```matlab function path = ABC_DronePathPlanning(startPoint,endPoint,mapData) % 基于人工蜂群算法实现无人机复杂地形三维航迹避障规划 ... end ``` #### 不返回旅行商问题(TSPNBR)与三点凸优化组合 为了提升特定应用场景下如无线传感网内数据收集工作的效能,有学者创造性地引入了改进版TSP概念——即允许部分站点仅被单向访问一次而不必回到出发点构成环路的形式。在此基础上进一步采用几何特性良好的三顶点结构作为基础单元构建整体框架,使得系统能够在保证覆盖范围的前提下尽可能降低能耗开销。实验表明随着监测装置数量增多及信号接收区间扩大,此类办法确实有助于显著改善作业表现指标[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值