Nhanes美国营养调查数据库的培训课程来了!
“Nhanes数据挖掘”课程即将开始! 欢迎报名, 发表文章即退款
近年来,随着肥胖问题越来越严重,酒精性脂肪肝的发病情况也相应的上升,这逐渐引起国内外学者更多关注,关注度高了,文章也就多了。先前的研究中我们发现代谢,遗传以及环境因素对非酒精性脂肪肝有一定程度的影响。本期推文我们要介绍研究美国超重/肥胖成年人24小时行为节律与非酒精性脂肪肝关联的文章。
2023年4月,一篇题为:Association of 24 h Behavior Rhythm with Non-Alcoholic Fatty Liver Disease among American Adults with Overweight/Obesity的研究论文发表于《Nutrients》,本文为中国学者写作,文章属于中科院分区医学二区,2023年IF=5.9。
这项研究利用美国营养健康(NHANES)的数据,通过多种方法,研究了美国超重/肥胖成年人24小时行为节律与非酒精性脂肪肝之间的关系。结果表明,在超重/肥胖的美国成年人中,24小时行为节律与非酒精性脂肪肝有显著的相关性。
摘要与主要结果
一、摘要
背景:新出现的证据表明,除了代谢、遗传和环境因素外,昼夜节律还在非酒精性脂肪肝(nAFLD)中发挥作用。本研究旨在探讨24小时行为节律(活动-休息和喂食-禁食节律)与非酒精性脂肪肝的关系。
方法:本研究纳入了2011-2014年全国健康与营养调查(NHANES)中的4502名超重/肥胖的成年参与者。计算行为节奏指数,并将 Logit模型模型分为五个等级。
结果:与最低五分位数的参与者相比,相对振幅(RA)最高五分位数的参与者 NAFLD 的风险较低(OR = 0.71,95% CI,0.55-0.91) ; 最不活跃连续5小时期间(L5)平均活动最高五分位数的参与者与 NAFLD 风险较高相关(OR = 1.35,95% CI,1.07-1.71)。此外,禁食时间和喂食节律评分最高五分位数的参与者相对于最低五分位数的参与者 NAFLD 的风险较低(OR = 0.76,95% CI,禁食时间0.59-0.98,OR = 0.74,95% CI,0.58-0.95为喂食节律评分)。肥胖参与者的相关性更强。其他行为节律指标与非酒精性脂肪性肝病的相关性均无显著性差异。
结论:在超重/肥胖的美国成年人中,24小时行为节律与非酒精性脂肪肝有显著的相关性。
二、研究结果
1. 研究人群的基线资料
参与者的平均年龄为 49.18 岁,其中 51.26% 为女性,66.07% 为非西班牙裔白人。在总共 4502 名参与者中, 1676 名(37.23%)被确定为疑似 NAFLD 病例。与非 NAFLD 参与者相比,患有 NAFLD 的参与者更可能是女性且相对年轻,并且具有较高的 BMI、较低的能量摄入、较高的 L5 和较短的禁食时间。表 1 总结了人群基线特征的其他详细信息。
2.超重/肥胖参与者 24 小时行为节律指数与 NAFLD 的关联
超重/肥胖参与者的 24 小时行为节律指数与 NAFLD 的关联如图 1 所示。
与 RA 和 L5 的五分位数 1 的参与者相比,五分位数 5 的参与者风险较低(OR = 0.69,95% CI)。
当模型 1 中的年龄、性别和种族进行调整时,NAFLD 的风险分别为 0.54–0.88 和更高的风险(OR = 1.36,95% CI,1.09–1.70)。
当进一步调整其他人口统计、生活习惯和疾病混杂因素时,RA 和 L5 第 5 分位数的参与者在模型 2 和模型 3 中仍与 NAFLD 相关(RA 的 ORModel2 = 0.71,95% CI,0.55–0.91,L5 的 ORModel2 = 1.35,95% CI,1.07–1.71);(对于 RA,ORModel3 = 0.71,95% CI,0.55–0.91;对于 L5,ORModel3 = 1.35,95% CI,1.07–1.71)。此外,与禁食时间和进食节律评分处于五分位数 1 的参与者相比,处于五分位数 5 的参与者患 NAFLD 的风险较低,OR = 0.77,95% CI,禁食时间为 0.61–0.98,OR = 0.75,95% CI,当在模型 1 中调整年龄、性别和种族时,喂养节律评分为 0.57–0.97。同样,当调整其他混杂因素时,喂养节律评分和禁食持续时间处于五分位数 5 的参与者仍然与模型中较低的 NAFLD 风险相关超重/肥胖参与者的模型 2 和模型 3(ORModel2 = 0.75,95% CI,禁食时间为 0.58–0.96,ORModel2 = 0.74,95% CI,喂养节律评分为 0.58–0.95);(对于禁食时间,ORModel3 = 0.76,95% CI,0.59–0.98;对于进食节律评分,ORModel3 = 0.74,95% CI,0.58–0.95)。
3.肥胖参与者 24 小时行为节律指数与 NAFLD 的关联(只考虑肥胖人群)
为了检验 24 小时行为节律指数与 NAFLD 的关联是否在 BMI 较高的人群中更为明显,我们对肥胖(定义为 BMI ≥ 30)的参与者进行了相同的分析,结果如图 2 所示。RA 的 OR 与超重/肥胖参与者的 OR 相似;而与超重/肥胖的参与者相比,L5 的五分位数 5 的参与者在肥胖参与者中的 NAFLD OR 显着更高。在模型 1 中,根据年龄、性别和种族进行调整后,L5 的五分位数 5 的参与者的 OR 为 1.45(95% CI,1.08–1.96)在患有肥胖症的参与者中。当进一步调整其他人口统计、生活习惯和疾病混杂因素时,L5 第 5 分位数的参与者在模型 2 和模型 3 中肥胖参与者中仍与较高的 NAFLD 风险相关(ORModel2 = 1.55,95% CI,1.12–2.14) ,ORModel3 = 1.55,95% CI,1.12–2.14)。此外,肥胖参与者的进食-禁食节律与 NAFLD 之间的关联也比超重/肥胖的参与者更强。在模型 1 中,根据年龄、性别和种族进行调整后,禁食持续时间和进食节律评分处于五分位数 5 的参与者的 OR 分别为 0.62(95% CI,0.44–0.87)和 0.69(95% CI,0.52–0.93)。NAFLD 分别。调整其他混杂因素后,禁食持续时间和喂养节律评分处于五分位数 5 的参与者仍与肥胖参与者中较低的 NAFLD 风险相关(ORModel2 = 0.61,95% CI,禁食持续时间为 0.43-0.85,ORModel2 = 0.67, 95% CI,喂养节律评分为 0.50–0.90);(对于禁食时间,ORModel3 = 0.62,95% CI,0.44–0.86;对于进食节律评分,ORModel3 = 0.68,95% CI,0.50–0.92)。
4.敏感性分析
当考虑其他混杂因素(包括 AHEI、癌症和心血管疾病)或使用未加权数据重复分析时,24 小时行为节律与 NAFLD 的关联保持一致,并且在当前饮酒者、当前吸烟者和不定期运动的参与者中保持稳定。相反,在目前不吸烟、不饮酒或经常锻炼的参与者中,没有发现 24 小时行为节律指数与 NAFLD 存在关联。
设计与统计学方法
一、研究设计
P:2011-2014 年国家健康和营养检查调查的参与者。
I:暴露因素为24小时行为节律,原本为评分,资料转换将评分五等分后,以五分位数的形式纳入研究。
O:结局:非酒精性脂肪肝。
S:横断面研究。
二、统计方法
1.基线资料描述以及差异性分析,人口统计特征、生活方式习惯和 NAFLD 状态的慢性病状态以连续变量的加权平均值和标准差 (SD) 的形式表示,分类变量以标准差 (SD) 的加权百分比的形式表示。p 值的计算使用根据年龄调整连续变量的一般线性模型以及非 NAFLD 和 NAFLD 组之间分类变量的卡方检验。
2.建立二元逻辑回归模型,采用二元逻辑回归模型来检查 24 小时行为节律与 NAFLD 的关联,并计算比值比 (OR) 和 95% 置信区间 (CI)。行为节律指数分为五分位数,最低五分位数作为参考组。使用 R 软件(版本 4.1.2)进行统计分析,并根据 NHANES 分析指南纳入样本权重,以确保估计值具有全国代表性。所有检验均为双尾,p < 0.05 被认为具有统计学差异。
3.敏感性分析,进行了几项敏感性分析来测试我们研究结果的稳健性。首先,考虑到饮食对NAFLD可能产生的影响,我们在完全调整模型的基础上进一步调整了替代健康饮食指数(AHEI)。其次,还对癌症和心血管疾病(CVD,包括充血性心力衰竭、冠心病、心绞痛、心脏病和中风)等慢性疾病进行了额外调整,以排除它们可能的相互关系。第三,使用未加权数据进行敏感性分析,以确认加权估计的稳定性。最后,我们根据吸烟状况(当前吸烟者和当前不吸烟者)、饮酒状况(当前饮酒者和当前不饮酒者)和运动状况(定期运动和不定期运动)进行亚组分析。
小感悟
本期介绍的是一篇二区文章,5.9分,高分文章。
文章的研究方法并不复杂,先对基线资料进行分析再差异性分析,随后建立回归模型,回归模型也采用了传统三件套:未校正,部分校正以及完全校正三种模型,再讨论一下重点人群(肥胖人群)的情况。最后进行敏感性分析用于验证。文章的敏感性分析做的较为出彩,做了四种敏感性分析,第一换了一个同类型指标进行分析,第二对疾病做出额外调整,第三采用未加权数据,更换数据,第四进行亚组分析,分人群进行单独讨论。敏感性分析做的非常到位,能用上的基本都上了。
写文章,重点在于出结果,不仅指标和对象要选好,在分析过程中还要灵活变通,如果灵活变通做不到,就老老实实的堆工作量。这篇文章统计方法并不难,方法上不出彩,那怎么在众多文章中脱颖而出呢?秘诀在于敏感性分析,多样的敏感性分析使得研究结果非常稳固。缺乏灵感,不妨加大工作量。总之多看多学多试,就是发文秘诀。
附上24小时行为节律的内容:
活动-休息节律指数的计算如我们之前的研究所示。简而言之,参与者连续 7 天在非惯用手手腕上佩戴加速度计(GT3X+,ActiGraph Corporation,彭萨科拉,佛罗里达州,美国)。使用“accelmissing”包估算数据,并使用“nparACT”包计算活动-休息节律指数。输出变量包括以下内容:(1)日间稳定性(IS)量化活动-休息节律的稳定性,接近1的值表明与24小时活动余弦模型的一致性更强。(2) 日内变异性 (IV) 量化了活动-休息节律的分散性,接近 2 的值表示更多的“上下”,而不是保持一致的活动或休息。(3) 最活跃的连续10 h时段的平均活动度(M10)。(4) 最不活跃的连续5小时周期的平均活性(L5)。(5) 相对振幅 (RA) 反映活动和休息模式的振幅,使用以下公式计算:RA = (M10 − L5)/(M10 + L5)。(6) Onset time of M10(M10开始时间)和onset time of L5(L5开始时间)分别提供活动和休息开始时间的信息。
通过回答“您什么时候开始吃/喝餐/食物?”的问题来收集用餐时间。总喂食时间=最后一餐时间-第一餐时间;因此,禁食时间 = 24 小时 - 总进食时间。此外,为了探索一个人的进食行为是否符合他们的活动-休息模式,我们确定了一个进食节律评分来反映对齐程度。首先,我们计算了最活跃的10小时时段(M10开始时间~M10结束时间)和最不活跃的5小时时段(L5开始时间~L5结束时间)的总喂养时段的重叠量。然后,将两个重叠量除以总摄食期量,分别计算活跃期和非活跃期发生的摄食期占总摄食期的比例。研究人员发现,活跃期喂养有益于健康,而非活跃期喂养则会产生相反的效果[12,18]。因此,最终的摄食节律评分计算如下:摄食节律评分=(总摄食时间段与最活跃10 h时段的重叠量/总摄食时间段数)−(总摄食时间段与最活跃10 h时段的重叠量最不活动的 5 小时时间/总喂食时间量)。例如,如果一个人的第一顿饭和最后一餐是在 07:00 和 19:00 吃的;M10开始时间和M10结束时间分别为09:00和19:00;L5开始时间和L5结束时间分别为03:00和08:00,则喂养节律得分为0.75(即[(19 − 9)/(19 − 7)] − [(8 − 7)/(19 − 7)] = 0.75)。进食节律得分越高(接近 1),表明进食行为与活动-休息模式更加一致。
最后,欢迎报名郑老师团队的统计学9.2-9.3的Nhanes数据挖掘课程