郑老师统计课程,欢迎点击报名:Nhanes公共数据库挖掘 课程
SII就是系统性免疫炎症指数,是评估患者免疫炎症状态的指标,是评估各类疾病的一种简单、快速、经济的生物标志物。
肪肝脂肪变性肝脏肝细胞胞浆内出现脂肪滴,伴有慢性肝淤血时,将呈现槟榔肝;重度肝脂肪变性称为脂肪肝。
2022年11月,中国学者在《Front Immunol》(二区,IF=7.3)发表题为:" Systemic immune-inflammation index is associated with hepatic steatosis: Evidence from NHANES 2015-2018" 的研究论文。
本研究为横断面研究,纳入了2015-2018年国家健康与营养调查(NHANES)成年人。结果表明,在美国成人中,SII与肝脂肪变性增加呈正相关。SII可能是一种简单和经济的方法来识别肝脏脂肪变性。
摘要与主要结果
一、摘要
背景:作为一种新的炎症标志物,系统性免疫炎症指数(SII)尚未与肝脂肪变性进行研究。本研究的目的是探讨SII与肝脂肪变性之间的可能关系。
方法:在横断面调查中,纳入了2015-2018年国家健康与营养调查(NHANES)中关于SII、肝脂肪变性和减肥手术的完整信息的成年人。用肝脂肪变性指数(HSI)评价肝脂肪变性。血小板计数×中性粒细胞计数/淋巴细胞计数计算SII。我们使用加权多变量回归分析和亚组分析来研究SII和肝脂肪变性之间的独立相互作用。通过倾向评分匹配控制潜在混杂因素,探讨SII、减肥手术和肝脂肪变性之间的潜在关系。
结果:本研究共纳入10505例受试者,其中5937例(56.5%)诊断为肝脂肪变性。校正协变量后,多变量logistic回归显示高SII水平是肝脂肪变性的独立危险因素(OR = 1.30, 95% CI: 1.10-1.52, p<0.01)。出乎意料的是,即使在PSM校正了BMI和HSI的差异后,减肥手术也降低了SII。
结论:在美国成人中,SII与肝脂肪变性增加呈正相关。SII可能是一种简单和经济的方法来识别肝脏脂肪变性。减肥手术可以在不减肥的情况下降低SII。这需要在进一步的前瞻性研究中得到验证。
二、研究结果
1.参与者的基线特征
共有10505名参与者参与,平均年龄为49.28岁,男女比例为48.62%对51.38%;56.52%的参与者被归类为肝脂肪变性。10505名与会者代表了2.297亿美国非收容平民。肝脂肪变性患者的年龄、种族、文化程度、BMI、糖尿病、吸烟状况、高血压、高脂血症、SII、ALT、糖化血红蛋白、TC、TG、SBP和DBP均有统计学意义(均p<0.05)。参与者的临床和生化特征如表1所示。最佳SII截止值为445.210(AUC:0.542)。ROC曲线如补充图S1所示。
2.SII是肝脂肪变性的独立危险因素
在调整了其他潜在的混杂因素后,我们创建了许多模型来评估SII对肝脂肪变性的独立影响。在单因素分析中,年龄、种族、教育水平、糖尿病、吸烟状况、高血压、高脂血症、SII、ALT、糖化血红蛋白、TC、TG、SBP和DBP与较高的肝脂肪变性发生率有关(p<0.05,补充表S1)。根据逻辑回归分析,显示SII水平与肝脂肪变性独立相关(OR=1.000,95%CI:1.000–1.001,p=0.041)。在单变量分析中,高水平的SII是肝脂肪变性的危险因素(OR=1.42,95%CI:1.26-1.59,P<0.0001,表2)。校正年龄、性别、种族、贫困收入比、教育水平、吸烟状况、糖尿病、高脂血症、高血压、ALT、AST、糖化血红蛋白、SBP、DBP、TC、TG后,高SII水平是肝脂肪变性的独立危险因素(OR=1.30,95%CI:1.10-1.52,P<0.01)。
3.亚组分析
我们的亚组分析结果显示,SII水平与肝脂肪变性之间存在不一致的关系(图2)。在按性别和高脂血症分层的各亚组中,SII与肝脂肪变性均有显著相关性(均p<0.05)。至于按年龄、糖尿病和高血压分层的亚组,只有在年龄<60岁、没有糖尿病和高血压的参与者中才观察到具有统计学意义的联系。尽管没有统计学意义(P>0.05),但在年龄≥60岁、患有糖尿病和高血压的参与者中,观察到SII与肝脂肪变性之间的正相关。交互作用测试显示,性别、糖尿病和高脂血症之间的SII与肝脂肪变性的关系没有显著差异,表明这些因素对这种正相关关系没有显著影响(交互作用p>0.05)。相反,年龄和高血压可能影响SII与肝脂肪变性之间的正相关性(交互作用p<0.05)。
4.PSM分析
进行PSM分析以评估SII与肝脂肪变性参与者的减肥手术之间的关系。年龄较大、女性、高教育程度、高家庭收入和高BMI更有可能接受减肥手术(补充表S2)。PSM后,这些特征没有显著差异(表3)。表3显示了有/无减肥手术组患者的基线特征。在接受/未接受减肥手术的肝脂肪变性患者中,高脂血症、ALT和TG有统计学意义。接受和未接受减肥术的肝脂肪病患者的静息特征没有差异。值得注意的是,减肥手术降低了与肝脏脂肪变性相关的高SII水平,与BMI无关。
设计与统计学方法
一、研究设计
P(Population)参与者:2015-2018年国家健康与营养调查(NHANES)中关于SII、肝脂肪变性和减肥手术的完整信息的成年人
E(exposure)暴露因素:系统性免疫炎症指数(SII)。
O(outcome)结局:肝脂肪变性。
S(Study design)研究类型:横断面研究。
二、统计方法
1.考虑到复杂的抽样调查,根据NHANES的建议进行了加权分析。使用加权学生t检验(连续变量)或加权卡方检验(分类变量)来比较正常组和肝脂肪变性组之间基线特征的差异。根据约登指数,利用受试者工作特性曲线(ROC)确定了SII水平的最佳临界值。采用多变量logistic回归分析来评估不同模型中SII与肝脂肪变性之间的相关性。模型1:不调整混杂变量。模型2:对年龄、种族、教育程度和吸烟状况进行了调整。模型3:调整年龄、性别、种族、PIR、文化程度、吸烟状况、糖尿病、高脂血症、高血压、ALT、AST、糖化血红蛋白、TC、TG、SBP、DBP。
2.为了研究不同亚组SII与肝脂肪变性之间的关系,进行了亚组分析。分层因素包括性别(男/女)、年龄(<60\/≥60岁)、高血压(是/否)、糖尿病(是/无)、高脂血症(是/没有)。相互作用分析用于评估亚组之间关联的异质性。
3.本研究进一步探讨了减肥手术对SII与肝脂肪变性关系的影响。倾向评分匹配(PSM)被用来消除偏见和控制潜在的混杂变量。R的“MatchIt”软件包用于PSM分析。“nhanesR”软件包用于提取和分析数据。P<0.05被认为具有统计学意义。
三、统计分析思路
这篇文章的统计分析思路也是比较简单:
首先开展两组的差异性分析,
其次利用多模型探讨主要因素与结局之间的关系,
接着就是亚组分析,有更多的讨论结果,
最后进行PSM,但哪两组进行匹配,匹配的条件是什么,没看懂,有明白的可以在留言讨论一下
一个专门做公共数据库的公众号,关注我们