TyG创新发文(IF=8.5)!中国学者用新指标TyG-WHtR联合Charls数据库玩出新花样!...

直播就在明天

2024年“孟德尔随机化快速撰写SCI论文”高级班

欢迎报名!8.3-8.4,组学MR!详情链接

作为公共数据库的热门指标,TyG已经催生了很多高SCI文章。那我们又该如何用这个指标创新发文呢?今天分享的这篇文章同样用了TyG结合了肥胖指标,探究TyG-WHtR与中国中老年人CVD风险之间的关系。

2024年7月11日,中山大学的学者采用CHARLS数据库,在期刊《Cardiovascular Diabetology(医学一区top,IF=8.5)发表题为:Association between triglyceride glucose-waist height ratio index and cardiovascular disease in middle-aged and older Chinese individuals: a nationwide cohort study”的研究论文,旨在探讨TyG-WHtR(甘油三酯葡萄糖-腰围身高比)的变化与CVD风险之间的关系。

研究结果表明,对于中年和老年人,TyG-WHtR的变化与CVD的风险独立相关。

f19a85422323644acec6f07da0e46287.png

本公号回复“ 原文”即可获得文献PDF等资料,如果进一步需要CHARLS数据库方法学习与指导请联系郑老师团队,微信号:aq566665

近年来心血管疾病(CVD)死亡人数显著增加,成为全球死亡的主要原因。一直以来,TyG作为一种简便易得的指标,广泛用于各种疾病的预测。其中,在预测CVD患者的结局方面表现非常出色,学者们用它发表了很多文章。

然而一些研究证实,在预测心血管疾病时,TyG结合肥胖指数比仅TyG指数效果更好。TyG指数可结合不同的肥胖指标形成新的指标,例如TyG-BMI、TyG-WC和TyG-WhtR。

TyG-WHtR或成为预测CVD最佳指标

研究纳入了CHARLS数据库2011-2020年3312名年龄≥45岁未患有CVD的参与者,平均年龄58.30 ± 8.38岁,45.3%为男性,平均累积TyG-WHtR为14.19 ± 2.19。

根据以下公式计算TyG、WHtR、TyG-WHtR和累积TyG-WHtR:

(1)TyG = ln [甘油三酯(mg/dl)×葡萄糖(mg/dl)/2];

(2)WHtR =腰围/身高;

(3)TyG-WHtR = TyG × WHtR;

(4)累积TyG-WHtR =(TyG-WHtR 2012 + TyG-WHtR 2015)/2 ×时间(2015-2012)。

主要终点是心血管疾病(CVD)。

a3b8db88f5993c1816445fc12a5f4655.png

到随访期结束时,共有623名参与者(18.8%)发生了CVD。研究团队观察到,较高水平的累积TyG-WHtR与较高的CVD事件风险独立相关。

0f663b9ad90240b42829362f97c471e3.png

使用ROC曲线分析,显示累积TyG-WHtR对CVD的诊断效力最高。这意味着。TyG-WHtR评估CVD风险的能力优于单独TyG和单独WHtR,累积TyG-WHtR作为TyG-WHtR动态变化的指标具有最佳性能。

然而,由于在婚姻亚组中,TyG-WHtR与CVD的关系并不显著,因此TyG-WHtR可能无法评估未婚人群的CVD风险。

81689c9d66188fe5d2fa4b295c6a5f4d.png

综上所述,对于中年和老年人,TyG-WHtR的变化与CVD的风险独立相关。对于TyG-WHtR长期持续偏高且呈上升趋势的个体,应采取运动、减肥或改变生活习惯等措施来降低CVD的风险。保持良好的TyG指数,有效的体重管理和合理的腰围有助于预防CVD。

从一系列文章中我们不难发现,各种研究结果显示TyG对于不同人群,不同心血管事件的诊断或其预后的预测都有着重要作用,不管是不是重症。这也是TyG受顶刊青睐的原因。然而发文量越大也意味着竞争越大,想了解更多创新发文思路的不妨关注“公共数据库与孟德尔随机化”公众号!我们将分享更多有意思的文章!

后   记

今天这篇文章最大的亮点是思路,指数TyG虽然好用,但在心血管疾病中却存在局限性,因此部分学者纷纷转战“TyG+肥胖指数”,探究新指数与各种疾病的关系。

看了这么多热门发文思路,想发文的心是否开始蠢蠢欲动?如果你也想用Charls发文,或者在分析过程中遇到困难,欢迎加入郑老师的课程!让你零基础也能顺利写毕业论文!

2811b6c399a61617c9b1b068a9e8dd64.png

我们团队提供“公共数据库挖掘”服务了

①公共数据库数据下载

②挖掘出具有发表级的结果

③包括SEER、NHANES、老年健康数据库、GBD数据库等

④提供规范的统计分析报告

⑤提供写作建议

联系李老师咨询(微信号sas555777)

44fc0cec9f5c407e7fd4bed320f438d2.png

【资源说明】 1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通。 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈! 本文介绍了基于QEM(Quadric Error Metrics,二次误差度量)的优化网格简化算法的C和C++实现源码及其相关文档。这一算法主要应用于计算机图形学领域,用于优化三维模型的多边形数量,使之在保持原有模型特征的前提下实现简化。简化的目的是为了提高渲染速度,减少计算资源消耗,以及便于网络传输等。 本项目的核心是网格简化算法的实现,而QEM作为该算法的核心,是一种衡量简化误差的数学方法。通过计算每个顶点的二次误差矩阵来评估简化操作的误差,并以此来指导网格简化过程。QEM算法因其高效性和准确性在计算机图形学中广泛应用,尤其在实时渲染和三维打印领域。 项目代码包含C和C++两种语言版本,这意味着它可以在多种开发环境中运行,增加了其适用范围。对于计算机相关专业的学生、教师和行业从业者来说,这个项目提供了丰富的学习和实践机会。无论是作为学习编程的入门材料,还是作为深入研究计算机图形学的项目,该项目都具有实用价值。 此外,项目包含的论文文档为理解网格简化算法提供了理论基础。论文详细介绍了QEM算法的原理、实施步骤以及与其他算法的对比分析。这不仅有助于加深对算法的理解,也为那些希望将算法应用于自己研究领域的人员提供了参考资料。 资源说明文档强调了项目的稳定性和可靠性,并鼓励用户在使用过程中提出问题或建议,以便不断地优化和完善项目。文档还提醒用户注意查看,以获取使用该项目的所有必要信息。 项目的文件名称列表中包含了加水印的论文文档、资源说明文件和实际的项目代码目录,后者位于名为Mesh-Simplification-master的目录下。用户可以将这些资源用于多种教学和研究目的,包括课程设计、毕业设计、项目立项演示等。 这个项目是一个宝贵的资源,它不仅提供了一个成熟的技术实现,而且为进一步的研究和学习提供了坚实的基础。它鼓励用户探索和扩展,以期在计算机图形学领域中取得更深入的研究成果。
在R语言中,要分析BMI(身体质量指数)和TyG(三角肌皮褶厚度与其血糖水平的比值,常用于评估代谢健康)这两个指标与卒中事件之间的交互作用并进行联合分析,可以使用`interaction()`函数和一些统计模型。这里假设你已经有了相关的数据集,包括BMI、TyG、卒中事件以及其他可能影响结果的变量。 1. **加载必要的库**: ```R library(dplyr) # 数据操作 library(ggplot2) # 可视化 library(caret) # 用于训练模型 library(survival) # 生存分析 ``` 2. **数据预处理**: - 检查并处理缺失值 - 将分类变量编码为因子 3. **创建交互项**: ```R df <- df %>% mutate(interaction_term = BMI * TyG) ``` 4. **建立模型**: - 使用生存分析中的`coxph()`函数来构建Cox回归模型,考虑到卒中事件为时间到事件型数据。 示例: ```R model <- coxph(Surv(event_time, event_status) ~ BMI + TyG + interaction_term + other_variables, data = df) ``` `event_time`代表卒中发生的时间,`event_status`是卒中的发生标志。 5. **检验交互效应**: 查看模型摘要,`anova(model)`或`waldtest(model)`会显示交互项是否显著。 6. **联合分析**: - 如果交互项显著,可以考虑分别分析BMI和TyG对卒中风险的影响,每个变量单独作用和交互作用下的影响。 - 可以通过分组或条件行分析来观察各群体间的交互效果。 7. **可视化结果**: ```R summary(model)$exp.coef # 获取系数估计和p值 plot(model, type = "ridge", xvar = c("BMI", "TyG"), add = TRUE, main = "Interactions") ``` 这将展示交互项在BMI和TyG两个维度上的效应线图。 8. **验证和报告**: 分析解释模型参数、进行敏感性分析,并确保结果符合研究假设和科学背景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值