最新,IF=63.1!NHANES数据库2025年首登JAMA主刊

 引言

今天分享的这篇文章,是2025年NHANES首篇发表在JAMA主刊的文章!学者简单探讨了近十年美国成人糖尿病患病率和控制情况,一起看下去吧!

糖尿病作为全球公共卫生挑战,其管理动态与医疗系统的制度紧密交织。但新冠疫情的爆发导致医疗资源挤兑,给该疾病的管理带来了严峻的挑战。

2025年2月27日,外国学者用NHANES数据库,在医学顶刊JAMA(医学一区Top,IF=63.1)发表题为:“Prevalence and Control of Diabetes Among US Adults, 2013 to 2023”的研究论文,旨在评估2013年至2023年间,美国成年人总体糖尿病患病率和控制情况的变化趋势。

研究结果表明,糖尿病患病率在2013年~2023年间保持稳定,但年轻人的血糖控制情况在2017年~2023年间显著恶化。

67f6c792ca66c814fbd8ac71aaf64bc4.png

本公号回复“ 原文”即可获得文献PDF等资料。

研究团队基于美国国家健康与营养调查(NHANES)数据库2013-2023年的数据,经过纳排,最终纳入了24,263名≥20岁的具有可用血红蛋白 A1c (HbA1c) 测量值的非妊娠成年人,加权平均年龄为48.5 岁,女性占51.4%。其中4,623名患有糖尿病。

主要结果表明,成人糖尿病患病率在2013年至2023年间没有显著变化(12.8%→14.1% )。

023f8a058e373c646e24cc4989d295ff.png

但在经过近10年的稳定后,糖尿病患者的血糖控制情况在2021年至2023年间恶化。这一趋势在20~44岁的年轻人中最为明显。

具体而言,平均HbA1c水平增加1%或者血糖控制降低20%,都将增加心血管事件的终生风险。

edda6390dc6a6680a9bcf0437b4e39c5.png

图2 2013-2023年,被诊断为糖尿病的成人中按年龄和性别划分的平均HbA1c水平和血糖控制率

综上所述,糖尿病患病率在2013年至2023年间没有显著变化,但血糖控制情况在2017年~2023年间有所恶化。

针对新冠疫情对慢性病的影响,我们可以基于NHANES数据库做出许多优秀选题。对这部分选题感兴趣的朋友,可以报名郑老师的一对一NHANES统计课程,专业统计师会为您制定个性化选题,助您快速发表SCI!

联系助教小董咨询(微信号aq566665)

图片

关于郑老师团队及公众号 

大型医学统计服务公众号平台,专注于医学生、医护工作者学术研究统计支持,我们是你们统计助理

我们开展对临床预测模型、轨迹增长模型、医学免费数据库NHANES、GBD数据库、孟德尔随机化方法1对1R语言指导(一年内不限时间,周末、晚上均统计师一对一指导)。

①指导学习R语言基本技巧

②全程指导课程学习

③课程R语言代码运行bug修复

④支持学员一篇SCI论文的数据分析

1对1R语言指导详情介绍

欢迎关注“公共数据库与孟德尔随机化”公众号

我们将持续为你提供NHANES数据库的最新资讯!

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
<think>好的,我现在需要帮助用户理解他们提到的“patch 63.1ms render 0.5ms”是什么意思。先,用户之前的问题是关于Vue渲染函数中的错误处理,现在他们又提到了patch和render的时间,可能是在性能优化或者调试过程中遇到了问题。 先,我需要确认这两个术语在Vue或前端框架中的含义。Patch通常指的是虚拟DOM的更新过程,也就是将虚拟DOM的变化应用到真实DOM上的阶段。而Render可能指的是生成虚拟DOM的过程。这两个时间加起来可能代表了整个组件的更新时间。 用户可能看到这样的数值,想知道是否正常,或者是否存在性能问题。通常来说,patch时间远大于render时间可能意味着DOM操作比较昂贵,或者组件结构复杂,导致更新耗时较长。比如,如果有大量的DOM节点需要更新,或者频繁的重排重绘,都可能导致patch时间增加。 接下来,我需要考虑用户可能的背景。他们可能是在开发过程中使用性能分析工具(比如Vue Devtools或浏览器的Performance面板)看到了这些指标,想要优化应用的性能。所以需要解释这两个指标的含义,可能的原因,以及优化的方法。 需要指出的是,63.1ms的patch时间可能超过了每帧16ms的预算(因为60fps需要每帧约16ms),这会导致用户感受到卡顿,尤其是在动画或滚动时。而render时间0.5ms相对较快,说明生成虚拟DOM的效率较高,问题可能出在patch阶段。 可能的原因包括复杂的DOM结构、过多的响应式数据变动、频繁的组件更新、或不必要的重新渲染。优化方法可能涉及减少不必要的响应式依赖、使用v-once或v-memo优化静态内容、合理使用key属性、避免内联函数等。 另外,用户可能需要知道如何定位具体的问题,比如使用性能分析工具记录时间线,检查哪些组件或操作耗时较长。还可以建议他们使用虚拟滚动、懒加载、代码拆分等技术来优化大型列表或复杂组件。 需要注意,用户的原始问题中提到了h函数和组件渲染的错误,而这次的问题转向了性能指标,可能需要确认用户是否在性能优化过程中遇到了问题,或者之前的错误解决后现在关注性能。因此,回答时需要涵盖这两个指标的含义、可能的影响因素以及具体的优化策略,帮助用户全面理解并采取行动。</think>在性能分析中,`patch 63.1ms render 0.5ms` 通常指 **虚拟 DOM 的更新耗时(patching)** 和 **生成虚拟 DOM 的耗时(rendering)**。这两个指标常见于 Vue、React 等框架的性能监控工具中,用于分析组件更新的性能瓶颈。以下从原理到优化进行详细说明: --- ### **1. 核心概念** - **Render 阶段**(0.5ms) 指生成或重新生成虚拟 DOM 树的耗时。此阶段执行: - 组件 `render` 函数或模板编译后的渲染函数 - 数据与模板的绑定(响应式数据触发依赖收集) - 生成新的虚拟 DOM 节点(vnode) - **Patch 阶段**(63.1ms) 指将虚拟 DOM 差异(diff)应用到真实 DOM 的耗时。此阶段执行: - 对比新旧虚拟 DOM 树(diff 算法) - 计算最小化 DOM 操作(创建/更新/删除节点) - 执行真实 DOM 修改(可能触发浏览器重排重绘) --- ### **2. 性能分析** - **指标解读** - `Render 0.5ms`:生成虚拟 DOM 的效率较高,通常无需优化。 - `Patch 63.1ms`:DOM 操作成本过高,可能引发页面卡顿(浏览器一帧的预算约 16ms)。 - **常见瓶颈原因** | 阶段 | 高耗时原因 | |----------|----------------------------------------------------------------------------| | **Render** | 复杂模板、大量条件分支、频繁计算属性 | | **Patch** | DOM 节点数量多、频繁增删节点、未合理使用 `key`、CSS 触发重排/重绘 | --- ### **3. 针对性优化方案** #### **优化 Render 阶段** 即使当前耗时较低,仍可预防潜在问题: ```javascript // 示例:避免内联函数导致重复渲染 // 错误写法(每次渲染生成新函数) <Child :onClick="() => handleClick(item.id)" /> // 正确写法(方法复用) <Child :onClick="handleClick" /> ``` #### **优化 Patch 阶段** 针对 63.1ms 高耗时的关键优化手段: 1. **减少 DOM 规模** - 分页/虚拟滚动:对长列表仅渲染可视区域(如 `vue-virtual-scroller`)。 - 懒加载:按需渲染非屏内容(结合 `Intersection Observer`)。 2. **稳定 `key` 的使用** ```html <!-- 错误:用数组索引作为 key --> <div v-for="(item, index) in list" :key="index"> {{ item.name }} </div> <!-- 正确:用唯一标识作为 key --> <div v-for="item in list" :key="item.id"> {{ item.name }} </div> ``` 3. **避免无效更新** ```javascript // 使用 v-once 或 v-memo 冻结静态内容 <div v-once>静态内容(仅渲染一次)</div> <div v-memo="[value]">仅当 value 变化时更新</div> ``` 4. **优化 CSS 性能** - 避免频繁触发重排的属性(如 `width`、`top`)。 - 使用 `transform` 和 `opacity` 实现动画(触发 GPU 加速)。 --- ### **4. 性能调试工具** - **Vue Devtools** - 使用 `Performance` 面板录制时间线,定位高耗时组件。 - 检查组件更新原因(`Triggered by` 提示)。 - **Chrome Performance 面板** - 录制完整页面操作,分析 `Update Layer Tree` 和 `Composite Layers` 耗时。 - 查找强制同步布局(如频繁读取 `offsetHeight`)。 --- ### **5. 高级场景优化** #### **复杂组件优化** ```javascript // 使用 shallowRef 避免深层响应式 const largeData = shallowRef({ ... }); // 手动控制更新时机 const forceUpdate = () => { largeData.value = { ...largeData.value }; }; ``` #### **Web Worker 计算密集型任务** ```javascript // 将非 DOM 操作的计算移至 Worker const worker = new Worker('data-processor.js'); worker.postMessage(data); worker.onmessage = (e) => { results.value = e.data; }; ``` --- ### **总结** - **优先优化 Patch 阶段**:63.1ms 的 DOM 操作耗时是要瓶颈。 - **关键手段**:减少 DOM 规模、稳定 `key`、避免无效更新、优化 CSS。 - **验证方法**:通过性能工具定位具体耗时操作,逐步验证优化效果。 若提供具体代码或场景,可进一步针对性分析优化方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值