构建开源的多模态 RAG 系统

本文介绍了如何构建一个开源的多模态检索增强生成(RAG)系统,利用ChromeDB和Hugging Face框架,不依赖LangChain或Llama索引。RAG通过结合外部知识库,增强了大型语言模型的准确性和可靠性。同时,文章探讨了多模态学习的重要性,以及如何使用CLIP模型处理图像和文本。最后,文章提供了创建RAG管道的步骤,包括数据预处理、向量数据库创建和多模态大型语言模型的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

每日推荐一篇专注于解决实际问题的外文,精准翻译并深入解读其要点,助力读者培养实际问题解决和代码动手的能力。

欢迎关注公众号(NLP Research),及时查看最新内容

原文标题:Building an Open Source Multi-Modal RAG System

原文地址:https://medium.com/nadsoft/building-an-open-source-multi-modal-rag-system-641271e4ef17


构建开源的多模态 RAG 系统

在这次新的冒险中,我们将深入探讨使用开源大语言多模态模型(LLMM)构建检索增强生成(RAG)系统的过程。值得注意的是,我们的重点是在不依赖 LangChain 或 Llama 索引的情况下实现这一目标;相反,我们将利用 ChromeDB 和 Hugging Face 框架。

<
### 关于多模态RAG开源框架 #### Haystack Haystack是一个全面而成熟的框架,支持多种数据类型的处理,包括文本、表格以及多媒体文件。对于希望构建复杂应用的开发者来说,这是一个理想的选择[^1]。 ```python from haystack.nodes import BM25Retriever, EmbeddingRetriever from haystack.document_stores import InMemoryDocumentStore document_store = InMemoryDocumentStore() retriever_text = BM25Retriever(document_store=document_store) retriever_image = EmbeddingRetriever(document_store=document_store, embedding_model="sentence-transformers/clip-ViT-B-32") ``` #### FlashRAG 作为一款新兴的专业框架,FlashRAG专注于高效能的数据检索与生成能力,在处理大规模数据集方面表现出色。该工具特别适合那些追求速度和效率的应用场景。 #### 使用LLMM构建自定义系统 除了上述提到的成熟框架外,还可以基于开源大型语言多模态模型(LLMM),通过集成ChromeDB和HuggingFace来创建定制化的多模态RAG系统。这种方法提供了极大的灵活性,使开发人员可以根据具体需求调整系统的各个组件[^3]。 ```bash pip install chromadb transformers torch ``` ```python import torch from transformers import CLIPProcessor, CLIPModel model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") def encode_images(image_paths): images = [Image.open(path).convert('RGB') for path in image_paths] inputs = processor(images=images, return_tensors='pt') outputs = model.get_image_features(**inputs) return outputs / outputs.norm(p=2, dim=-1) encoded_images = encode_images(["path/to/image1.jpg", "path/to/image2.png"]) print(encoded_images.shape) # 输出形状为(batch_size, hidden_dim) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hj_caas

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值