1.曲线积分
1.1 曲线积分的意义
曲线积分可用于求物体沿路径运动时所做的功,以及求密度变化的导线的质量
曲线积分不再是以往在某个区间内进行积分,而是在特定曲线上进行积分,即积分区域变为了一条曲线
截图来源于:Introduction to the line integral | Multivariable Calculus | Khan Academy
1.2 第一类曲线积分的计算(对弧长的曲线积分)
第一类曲线积分主要用于求解曲线质量
二维曲线积分
∫
L
f
(
x
,
y
)
d
s
\int_Lf(x,y)ds
∫Lf(x,y)ds
我们可以将
f
(
x
,
y
)
f(x,y)
f(x,y)理解为平面内点
(
x
,
y
)
(x,y)
(x,y)处的密度,而
d
s
ds
ds是平面内曲线的弧长微元,对整个曲线
L
L
L 积分得到此平面曲线的质量
三维曲线积分
∫
L
f
(
x
,
y
,
z
)
d
s
\int_Lf(x,y,z)ds
∫Lf(x,y,z)ds
我们可以将
f
(
x
,
y
,
z
)
f(x,y,z)
f(x,y,z)理解为空间内点
(
x
,
y
,
z
)
(x,y,z)
(x,y,z)处的密度,而
d
s
ds
ds是空间内曲线的弧长微元,对整个曲线
L
L
L 积分得到此空间曲线的质量
利用曲线积分具有的对称性来简化计算
下图改编自小元老师
下图改编自小元老师
下图改编自小元老师
轮换对称性,即 x 换为 y,y 换为 x 后被积函数一致
1.2.1 曲线积分转为定积分
方法一:曲线积分转为定积分
我们一般通过将弧长微元 ds 用 x,y 或参数 t 表示出来,由此将曲线积分转变为定积分来计算
二维曲线
曲线由参数方程定义
例题:
C u r v e C : x = c o s ( t ) , y = s i n ( t ) , 0 ≤ t ≤ π 2 (图中黑线) f ( x , y ) = x y (图中红色曲面) ∫ C f ( x , y ) d s = ∫ C x y d s (图中黄色线圈住的部分的面积,面积大小可理解为粒子沿黑色曲线做的功的大小) d s = ( d x d t ) 2 + ( d y d t ) 2 d t ∫ t = 0 t = π / 2 x y ( c o s ′ ( t ) ) 2 + ( s i n ′ ( t ) ) 2 d t = ∫ t = 0 t = π / 2 c o s ( t ) s i n ( t ) d t Curve\,C:x=cos(t),y=sin(t),0\leq t \leq \frac{\pi}{2}(图中黑线)\\ ~\\ f(x,y)=xy(图中红色曲面)\\ ~\\ \int_Cf(x,y)ds=\int_Cxyds(图中黄色线圈住的部分的面积,面积大小可理解为粒子沿黑色曲线做的功的大小)\\ ~\\ ds=\sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt ~\\ ~\\ \int_{t=0}^{t=\pi/2}xy\sqrt{(cos'(t))^2+(sin'(t))^2}dt=\int_{t=0}^{t=\pi/2}cos(t)sin(t) dt CurveC:x=cos(t),y=sin(t),0≤t≤2π(图中黑线) f(x,y)=xy(图中红色曲面) ∫Cf(x,y)ds=∫Cxyds(图中黄色线圈住的部分的面积,面积大小可理解为粒子沿黑色曲线做的功的大小) ds=(dtdx)2+(dtdy)2dt ∫t=0t=π/2xy(cos′(t))2+(sin′(t))2dt=∫t=0t=π/2cos(t)sin(t)dt
二维曲线
曲线由x的式子定义
二维曲线
曲线由y的式子定义
三维曲线
曲线由参数方程定义
下例来自:重积分、曲线积分、曲面积分【合集】【小元老师】
1.2.2 使用格林公式将闭合曲线积分转为二重积分
方法二:对于正向闭合曲线使用格林公式
详见本人博客:格林公式(Green‘s Formula)
推荐文章:kaysen学长:格林公式史上最通俗最透彻讲解
1.2.3 与路径无关的曲线积分的充要条件
笔记来自:格林公式【小元老师】
方法三:使用与路径无关的曲线积分的充要条件
起点相同,终点相同,则中间无论路径是什么,最终的曲线积分结果都相同
G为单连通区域
∫
L
1
P
d
x
+
Q
d
y
=
∫
L
2
P
d
x
+
Q
d
y
\int_{L_1}Pdx+Qdy=\int_{L_2}Pdx+Qdy
∫L1Pdx+Qdy=∫L2Pdx+Qdy
上述等式成立的充要条件是
∂
P
∂
y
=
∂
Q
∂
x
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
∂y∂P=∂x∂Q
分析:
负L2代表与L1反向,且构成闭合曲线
∫
L
1
P
d
x
+
Q
d
y
−
∫
L
2
P
d
x
+
Q
d
y
=
∮
L
1
−
L
2
P
d
x
+
Q
d
y
=
0
\int_{L_1}Pdx+Qdy-\int_{L_2}Pdx+Qdy=\oint\limits_{L_1-L_2}Pdx+Qdy=0\\ ~\\
∫L1Pdx+Qdy−∫L2Pdx+Qdy=L1−L2∮Pdx+Qdy=0
应用格林公式
∮
L
1
−
L
2
P
d
x
+
Q
d
y
=
∬
D
∂
P
∂
y
−
∂
Q
∂
x
d
x
d
y
=
0
∂
P
∂
y
=
∂
Q
∂
x
\oint\limits_{L_1-L_2}Pdx+Qdy=\iint\limits_{D}\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}dxdy=0\\ ~\\ \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
L1−L2∮Pdx+Qdy=D∬∂y∂P−∂x∂Qdxdy=0 ∂y∂P=∂x∂Q
积分与路径无关的场为保守场
例如:重力场,孩子玩直滑梯和弯滑梯,从相同高度滑下来重力做的功都相同
1.2.4 使用斯托克斯公式
方法四:使用斯托克斯公式
详见本人博客:斯托克斯定理
1.3 第二类曲线积分的计算(对坐标的曲线积分)
详见本人博客:向量场中的曲线积分、环量、通量
笔记来自:重积分、曲线积分、曲面积分【合集】【小元老师】
第二类曲线积分主要用于求解变力沿曲线做的功(研究环流量)
向量值函数F
F
(
x
,
y
)
=
P
(
x
,
y
)
i
+
Q
(
x
,
y
)
j
\bold{F}(x,y)=P(x,y)\bold{i}+Q(x,y)\bold{j}
F(x,y)=P(x,y)i+Q(x,y)j
P为力F在x方向的变分力,dx为x方向的长度微元
Q为力F在y方向的变分力,dy为y方向的长度微元
函数
P
(
x
,
y
)
P(x,y)
P(x,y)在有向曲线弧 L 对坐标
x
x
x 的曲线积分(理解为力在x方向做的功),记作
∫
L
P
(
x
,
y
)
d
x
\int_LP(x,y)dx
∫LP(x,y)dx
函数
Q
(
x
,
y
)
Q(x,y)
Q(x,y)在有向曲线弧 L 对坐标
y
y
y 的曲线积分(理解为力在y方向做的功),记作
∫
L
Q
(
x
,
y
)
d
y
\int_LQ(x,y)dy
∫LQ(x,y)dy
合并以上两个积分
第二类曲线积分的一般形式
W
=
∫
L
P
(
x
,
y
)
d
x
+
Q
(
x
,
y
)
d
y
W=\int_LP(x,y)dx+Q(x,y)dy\\
W=∫LP(x,y)dx+Q(x,y)dy
第二类曲线积分的向量形式
W
=
∫
L
F
(
x
,
y
)
⋅
d
r
F
(
x
,
y
)
=
P
(
x
,
y
)
i
+
Q
(
x
,
y
)
j
r
=
d
x
i
+
d
y
j
W=\int_L\bold{F}(x,y)\cdot d\bold{r}\\ ~\\ \bold{F}(x,y)=P(x,y)\bold{i}+Q(x,y)\bold{j}\\ ~\\ \bold{r}=dx\bold{i}+dy\bold{j}
W=∫LF(x,y)⋅dr F(x,y)=P(x,y)i+Q(x,y)j r=dxi+dyj
将第二类曲线积分转为定积分
二维空间中曲线由参数方程定义
三维空间中曲线由参数方程定义
下面例子来自:重积分、曲线积分、曲面积分【合集】【小元老师】
1.4 第一类曲线积分与第二类曲线积分的关系
第一类曲线积分(对弧长的曲线积分)(曲线无向,可用对称性)
第二类曲线积分(对坐标的曲线积分)(曲线有向,不随便使用对称性)
∫
L
P
(
x
,
y
)
d
x
+
Q
(
x
,
y
)
d
y
=
∫
L
[
P
(
x
,
y
)
cos
α
+
Q
(
x
,
y
)
cos
β
]
d
s
\int_LP(x,y)dx+Q(x,y)dy=\int_L[P(x,y)\cos\alpha+Q(x,y)\cos\beta ]ds
∫LP(x,y)dx+Q(x,y)dy=∫L[P(x,y)cosα+Q(x,y)cosβ]ds
简写为
∫
L
P
d
x
+
Q
d
y
=
∫
L
[
P
cos
α
+
Q
cos
β
]
d
s
\int_LPdx+Qdy=\int_L[P\cos\alpha+Q\cos\beta]ds
∫LPdx+Qdy=∫L[Pcosα+Qcosβ]ds
对于三维空间中的第一类曲线积分和第二类曲线积分同样适用
∫
L
P
(
x
,
y
,
z
)
d
x
+
Q
(
x
,
y
,
z
)
d
y
+
R
(
x
,
y
,
z
)
d
z
=
∫
L
[
P
(
x
,
y
,
z
)
cos
α
+
Q
(
x
,
y
,
z
)
cos
β
+
R
(
x
,
y
,
z
)
cos
γ
]
d
s
\int_LP(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=\int_L[P(x,y,z)\cos\alpha+Q(x,y,z)\cos\beta+R(x,y,z)\cos\gamma ]ds
∫LP(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=∫L[P(x,y,z)cosα+Q(x,y,z)cosβ+R(x,y,z)cosγ]ds
简写为
∫
L
P
d
x
+
Q
d
y
+
R
d
z
=
∫
L
[
P
cos
α
+
Q
cos
β
+
R
cos
γ
]
d
s
\int_LPdx+Qdy+Rdz=\int_L[P\cos\alpha+Q\cos\beta+R\cos\gamma]ds
∫LPdx+Qdy+Rdz=∫L[Pcosα+Qcosβ+Rcosγ]ds
1.5 第一类曲线积分和第二类曲线积分的几何解释
笔记来自:b站up主:深科普硬科幻
第一类曲线积分的面积大小代表曲线质量的大小
第二类曲线积分的面积大小代表质点沿曲线做功的大小,不同方向的投影代表不同方向上的功
1.6 曲线积分注意事项
1.2.1 第一类曲线积分注意事项
1.2.2 第二类曲线积分注意事项
下图中积分曲线(xy平面内)不单调,曲线积分在yz平面的投影出现重叠
这就是第二类曲线积分存在方向的原因