曲线积分(Line Integral)

1.曲线积分

1.1 曲线积分的意义

曲线积分可用于求物体沿路径运动时所做的,以及求密度变化的导线的质量
曲线积分不再是以往在某个区间内进行积分,而是在特定曲线上进行积分,即积分区域变为了一条曲线

截图来源于:Introduction to the line integral | Multivariable Calculus | Khan Academy



1.2 第一类曲线积分的计算(对弧长的曲线积分)

第一类曲线积分主要用于求解曲线质量
二维曲线积分
∫ L f ( x , y ) d s \int_Lf(x,y)ds Lf(x,y)ds
我们可以将 f ( x , y ) f(x,y) f(x,y)理解为平面内点 ( x , y ) (x,y) (x,y)处的密度,而 d s ds ds是平面内曲线的弧长微元,对整个曲线 L L L 积分得到此平面曲线的质量

三维曲线积分
∫ L f ( x , y , z ) d s \int_Lf(x,y,z)ds Lf(x,y,z)ds
我们可以将 f ( x , y , z ) f(x,y,z) f(x,y,z)理解为空间内点 ( x , y , z ) (x,y,z) (x,y,z)处的密度,而 d s ds ds是空间内曲线的弧长微元,对整个曲线 L L L 积分得到此空间曲线的质量

利用曲线积分具有的对称性来简化计算
下图改编自小元老师

下图改编自小元老师

下图改编自小元老师
轮换对称性,即 x 换为 y,y 换为 x 后被积函数一致

1.2.1 曲线积分转为定积分

方法一:曲线积分转为定积分
我们一般通过将弧长微元 ds 用 x,y 或参数 t 表示出来,由此将曲线积分转变为定积分来计算
二维曲线
曲线由参数方程定义

例题:

C u r v e   C : x = c o s ( t ) , y = s i n ( t ) , 0 ≤ t ≤ π 2 (图中黑线)   f ( x , y ) = x y (图中红色曲面)   ∫ C f ( x , y ) d s = ∫ C x y d s (图中黄色线圈住的部分的面积,面积大小可理解为粒子沿黑色曲线做的功的大小)   d s = ( d x d t ) 2 + ( d y d t ) 2 d t     ∫ t = 0 t = π / 2 x y ( c o s ′ ( t ) ) 2 + ( s i n ′ ( t ) ) 2 d t = ∫ t = 0 t = π / 2 c o s ( t ) s i n ( t ) d t Curve\,C:x=cos(t),y=sin(t),0\leq t \leq \frac{\pi}{2}(图中黑线)\\ ~\\ f(x,y)=xy(图中红色曲面)\\ ~\\ \int_Cf(x,y)ds=\int_Cxyds(图中黄色线圈住的部分的面积,面积大小可理解为粒子沿黑色曲线做的功的大小)\\ ~\\ ds=\sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt ~\\ ~\\ \int_{t=0}^{t=\pi/2}xy\sqrt{(cos'(t))^2+(sin'(t))^2}dt=\int_{t=0}^{t=\pi/2}cos(t)sin(t) dt CurveCx=cos(t)y=sin(t)0t2π(图中黑线) f(x,y)=xy(图中红色曲面) Cf(x,y)ds=Cxyds(图中黄色线圈住的部分的面积,面积大小可理解为粒子沿黑色曲线做的功的大小) ds=(dtdx)2+(dtdy)2 dt  t=0t=π/2xy(cos(t))2+(sin(t))2 dt=t=0t=π/2cos(t)sin(t)dt

下例来自:重积分、曲线积分、曲面积分【合集】【小元老师】

二维曲线
曲线由x的式子定义

二维曲线
曲线由y的式子定义

三维曲线
曲线由参数方程定义

下例来自:重积分、曲线积分、曲面积分【合集】【小元老师】

1.2.2 使用格林公式将闭合曲线积分转为二重积分

方法二:对于正向闭合曲线使用格林公式
详见本人博客:格林公式(Green‘s Formula)
推荐文章:kaysen学长:格林公式史上最通俗最透彻讲解

1.2.3 与路径无关的曲线积分的充要条件

笔记来自:格林公式【小元老师】

方法三:使用与路径无关的曲线积分的充要条件
起点相同,终点相同,则中间无论路径是什么,最终的曲线积分结果都相同

G为单连通区域

∫ L 1 P d x + Q d y = ∫ L 2 P d x + Q d y \int_{L_1}Pdx+Qdy=\int_{L_2}Pdx+Qdy L1Pdx+Qdy=L2Pdx+Qdy
上述等式成立的充要条件是
∂ P ∂ y = ∂ Q ∂ x \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} yP=xQ
分析:
负L2代表与L1反向,且构成闭合曲线
∫ L 1 P d x + Q d y − ∫ L 2 P d x + Q d y = ∮ L 1 − L 2 P d x + Q d y = 0   \int_{L_1}Pdx+Qdy-\int_{L_2}Pdx+Qdy=\oint\limits_{L_1-L_2}Pdx+Qdy=0\\ ~\\ L1Pdx+QdyL2Pdx+Qdy=L1L2Pdx+Qdy=0 
应用格林公式
∮ L 1 − L 2 P d x + Q d y = ∬ D ∂ P ∂ y − ∂ Q ∂ x d x d y = 0   ∂ P ∂ y = ∂ Q ∂ x \oint\limits_{L_1-L_2}Pdx+Qdy=\iint\limits_{D}\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}dxdy=0\\ ~\\ \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} L1L2Pdx+Qdy=DyPxQdxdy=0 yP=xQ
积分与路径无关的场为保守场
例如:重力场,孩子玩直滑梯和弯滑梯,从相同高度滑下来重力做的功都相同

1.2.4 使用斯托克斯公式

方法四:使用斯托克斯公式
详见本人博客:斯托克斯定理

1.3 第二类曲线积分的计算(对坐标的曲线积分)

详见本人博客:向量场中的曲线积分、环量、通量
笔记来自:重积分、曲线积分、曲面积分【合集】【小元老师】

第二类曲线积分主要用于求解变力沿曲线做的功(研究环流量)

向量值函数F
F ( x , y ) = P ( x , y ) i + Q ( x , y ) j \bold{F}(x,y)=P(x,y)\bold{i}+Q(x,y)\bold{j} F(x,y)=P(x,y)i+Q(x,y)j
P为力F在x方向的变分力,dx为x方向的长度微元
Q为力F在y方向的变分力,dy为y方向的长度微元

函数 P ( x , y ) P(x,y) P(x,y)在有向曲线弧 L 对坐标 x x x 的曲线积分(理解为力在x方向做的功),记作
∫ L P ( x , y ) d x \int_LP(x,y)dx LP(x,y)dx
函数 Q ( x , y ) Q(x,y) Q(x,y)在有向曲线弧 L 对坐标 y y y 的曲线积分(理解为力在y方向做的功),记作
∫ L Q ( x , y ) d y \int_LQ(x,y)dy LQ(x,y)dy
合并以上两个积分
第二类曲线积分的一般形式
W = ∫ L P ( x , y ) d x + Q ( x , y ) d y W=\int_LP(x,y)dx+Q(x,y)dy\\ W=LP(x,y)dx+Q(x,y)dy
第二类曲线积分的向量形式
W = ∫ L F ( x , y ) ⋅ d r   F ( x , y ) = P ( x , y ) i + Q ( x , y ) j   r = d x i + d y j W=\int_L\bold{F}(x,y)\cdot d\bold{r}\\ ~\\ \bold{F}(x,y)=P(x,y)\bold{i}+Q(x,y)\bold{j}\\ ~\\ \bold{r}=dx\bold{i}+dy\bold{j} W=LF(x,y)dr F(x,y)=P(x,y)i+Q(x,y)j r=dxi+dyj
将第二类曲线积分转为定积分
二维空间中曲线由参数方程定义

三维空间中曲线由参数方程定义

下面例子来自:重积分、曲线积分、曲面积分【合集】【小元老师】

1.4 第一类曲线积分与第二类曲线积分的关系

第一类曲线积分(对弧长的曲线积分)(曲线无向,可用对称性)
第二类曲线积分(对坐标的曲线积分)(曲线有向,不随便使用对称性)

∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ L [ P ( x , y ) cos ⁡ α + Q ( x , y ) cos ⁡ β ] d s \int_LP(x,y)dx+Q(x,y)dy=\int_L[P(x,y)\cos\alpha+Q(x,y)\cos\beta ]ds LP(x,y)dx+Q(x,y)dy=L[P(x,y)cosα+Q(x,y)cosβ]ds
简写为
∫ L P d x + Q d y = ∫ L [ P cos ⁡ α + Q cos ⁡ β ] d s \int_LPdx+Qdy=\int_L[P\cos\alpha+Q\cos\beta]ds LPdx+Qdy=L[Pcosα+Qcosβ]ds
对于三维空间中的第一类曲线积分和第二类曲线积分同样适用
∫ L P ( x , y , z ) d x + Q ( x , y , z ) d y + R ( x , y , z ) d z = ∫ L [ P ( x , y , z ) cos ⁡ α + Q ( x , y , z ) cos ⁡ β + R ( x , y , z ) cos ⁡ γ ] d s \int_LP(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=\int_L[P(x,y,z)\cos\alpha+Q(x,y,z)\cos\beta+R(x,y,z)\cos\gamma ]ds LP(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=L[P(x,y,z)cosα+Q(x,y,z)cosβ+R(x,y,z)cosγ]ds
简写为
∫ L P d x + Q d y + R d z = ∫ L [ P cos ⁡ α + Q cos ⁡ β + R cos ⁡ γ ] d s \int_LPdx+Qdy+Rdz=\int_L[P\cos\alpha+Q\cos\beta+R\cos\gamma]ds LPdx+Qdy+Rdz=L[Pcosα+Qcosβ+Rcosγ]ds

1.5 第一类曲线积分和第二类曲线积分的几何解释

笔记来自:b站up主:深科普硬科幻

第一类曲线积分的面积大小代表曲线质量的大小
第二类曲线积分的面积大小代表质点沿曲线做功的大小,不同方向的投影代表不同方向上的功

1.6 曲线积分注意事项

1.2.1 第一类曲线积分注意事项

1.2.2 第二类曲线积分注意事项


下图中积分曲线(xy平面内)不单调,曲线积分在yz平面的投影出现重叠

这就是第二类曲线积分存在方向的原因

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值