再理解:零空间、行空间、列空间、左零空间、基础解系、极大线性无关组、齐次解、非齐次解之间的关系

本文深入探讨了线性代数中的关键概念,包括零空间、行空间、列空间、左零空间及其相互关系。零空间与行空间正交,列空间与左零空间也正交,且它们的秩相等。基础解系是解空间的基,非齐次方程组的解由齐次方程组的解和一个特解构成。同时,通过矩阵的行空间和列空间可以理解非齐次方程组的解结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.再理解:零空间、行空间、列空间、左零空间、基础解系、极大线性无关组、齐次解、非齐次解之间的关系

笔记来源:This is what matrices (and matrix manipulation) really look like

本人博客:计算矩阵的秩、行空间、列空间、零空间、左零空间

本人博客:3Blue1Brown系列:逆矩阵、秩、列空间、零空间

本人博客:从线代角度图解:通解、特解、非齐次通解、非齐次特解、齐次通解、齐次特解

推荐文章:线代-- 研究矩阵四大子空间的意义

此篇文章仅以方阵为例

1.1 零空间(Null Space, N ( A ) N(A) N(A)

齐次线性方程组

方程组的矩阵表示
注意此矩阵为 A A A
A x ⃗ = 0 ⃗ A\vec{x}=\vec{0} Ax =0

方程组解的角度:
上面三个方程分别对应三个平面,三个平面交于一线,这条交线上的每个点 ( x , y , z ) (x,y,z) (x,y,z)代入三个方程都会使得三个方程为0,即交线上每个点均为三个方程的解,这些点(解)构成了矩阵A的零空间
线性变换的角度:
线性变换前的空间内所有点,在经过矩阵A的变换后,在上图交线中的所有点都被压缩到原点

矩阵A的零空间

1.2 行空间(Row Space, C ( A T ) C(A^T) C(AT)

非齐次线性方程组

方程组的矩阵表示
注意此矩阵为 A T A^T AT

A T y ⃗ = b ⃗ A^T\vec{y}=\vec{b} ATy =b
将上式化为矩阵 A A A乘以某个向量的形式
A T y ⃗ = b ⃗   ( A T y ⃗ ) T = b ⃗ T   y ⃗ T A = b ⃗ T A^T\vec{y}=\vec{b}\\ ~\\ (A^T\vec{y})^T=\vec{b}^T\\ ~\\ \vec{y}^TA=\vec{b}^T ATy =b  (ATy )T=b T y TA=b T
矩阵左乘向量
下面第一张图来自:矩阵乘法核心思想(2):行空间

我们观察一下矩阵 A A A 的行向量与零空间中的向量之间的关系

矩阵 A A A的三个行向量张成行空间,白线为矩阵 A A A的零空间,我们发现行空间⊥零空间

1.3 零空间与行空间

零空间⊥行空间

1.4 列空间(Column Space, C ( A ) C(A) C(A)

非齐次线性方程组

方程组的矩阵表示
注意此矩阵为 A A A

A x ⃗ = b ⃗ A\vec{x}=\vec{b} Ax =b

矩阵右乘向量
下面第一张图来自:矩阵乘法核心思想(2):行空间


上图中列空间是由矩阵A的三个列向量线性组合张成的空间

我们将矩阵A的三个空间放在一起看看它们之间的关系

1.5 左零空间(Left Nullspace, N ( A T ) N(A^T) N(AT)

非齐次线性方程组

方程组的矩阵表示
注意此矩阵为 A T A^T AT

A T y ⃗ = 0 ⃗ A^T\vec{y}=\vec{0} ATy =0
将上式化为矩阵 A A A乘以某个向量的形式
A T y ⃗ = 0 ⃗   ( A T y ⃗ ) T = 0 ⃗ T   y ⃗ T A = 0 ⃗ T A^T\vec{y}=\vec{0}\\ ~\\ (A^T\vec{y})^T=\vec{0}^T\\ ~\\ \vec{y}^TA=\vec{0}^T ATy =0  (ATy )T=0 T y TA=0 T
上面这些式子中 y ⃗ T A = 0 ⃗ T \vec{y}^TA=\vec{0}^T y TA=0 T 解向量 y ⃗ T \vec{y}^T y T 在矩阵 A A A的左侧,从这里体现了“左”字
矩阵 A A A的左零空间就是矩阵 A T A^T AT的零空间

1.6 列空间与左零空间

左零空间⊥列空间

1.7 各个空间之间的关系

零空间与行空间正交
列空间与左零空间正交
下面第一张图来自:线性代数“正交”全家桶(2) :正交子空间


对任一矩阵 A m × n A_{m×n} Am×n 都有 Row Rank = Column Rank = Rank \text{Row Rank}=\text{Column Rank}=\text{Rank} Row Rank=Column Rank=Rank

行空间: im ( A T ) \text{im}(A^T) im(AT)
零空间: ker ( A ) \text{ker}(A) ker(A)
列空间: im ( A ) \text{im}(A) im(A)
左零空间: ker ( A T ) \text{ker}(A^T) ker(AT)
行空间和零空间构成 n n n维空间
列空间和左零空间构成 m m m维空间

1.8 基础解系、极大线性无关组

个人理解:行空间、零空间、列空间、左零空间都是由对应线性方程组的所有解构成的空间,由于每个解为一个点,此点与原点构成向量,也可以说线性方程组的解向量构成了上述空间,一句话概括:这些空间都是对应线性方程组的解空间
解向量的极大线性无关组就是基础解系基础解系相当于解空间的基),基础解系通过线性组合得到所有解向量,即所有解向量都可以由基础解系线性表示

1.9 齐次与非齐次方程组的解

零空间和左零空间就是齐次方程组的解所构成的空间
行空间和列空间就是非齐次方程组的解所构成空间

A x ⃗ = b ⃗ A\vec{x}=\vec{b} Ax =b 的解集是一个和 A x ⃗ = 0 ⃗ A\vec{x}=\vec{0} Ax =0 的解空间相平行的结构,该结构是Ax=0的解空间沿着一个特解方向平移的结果 --摘自:非齐次线性方程组通解的结构如何理解?

下面第一张图来自:矩阵乘法核心思想(3):零空间

具体详见本人博客:从线代角度图解:通解、特解、非齐次通解、非齐次特解、齐次通解、齐次特解

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值