[Mamba]FusionMamba:基于状态空间模型的高效图像融合

这篇论文的标题是《FusionMamba: Efficient Image Fusion with State Space Model》,作者是Siran Peng, Xiangyu Zhu, Haoyu Deng, Zhen Lei, Liang-Jian Deng。论文主要研究的是图像融合技术,特别是在高分辨率多光谱/高光谱图像生成方面的应用。图像融合旨在通过结合高分辨率但光谱信息有限的图像与低分辨率但光谱数据丰富的图像,生成具有丰富光谱信息的高分辨率图像。现有的深度学习方法主要依赖于卷积神经网络(CNNs)或变换器(Transformers)来提取特征和合并不同类型的数据,但这些方法存在一定的局限性。

在这里插入图片描述

关键点和主要贡献:

  1. FusionMamba方法:提出了一种新颖的图像融合方法,名为FusionMamba,它通过结合Mamba模块到两个U形网络中,实现了空间和光谱特征的有效提取。

  2. 双U形网络结构:提出了一个包含空间U-Net和光谱U-Net的网络结构,分别从PAN/RGB图像中提取空间特征,从LRMS/LRHS图像中捕获光谱特征,这种结构允许独立和层次化的学习。

  3. FusionMamba模块:扩展了Mamba模块以支持双输入,创建了一个新的模块,称为FusionMamba模块,它比现有的融合技术(如连接和交叉注意力)更有效。

  4. 实验验证:在五个数据集上进行了一系列的实验,涉及三个图像融合任务,包括pansharpening、高光谱pansharpening和高光谱图像超分辨率(HISR)。定量和定性评估结果表明,FusionMamba方法达到了最先进的性能。
    在这里插入图片描述

具体方法和技术:

  • 状态空间模型(SSM):利用SSM,特别是Mamba,通过线性复杂性实现全局感知,解决了CNNs和Transformers的局限性。

  • Mamba和FusionMamba模块:详细介绍了Mamba模块和新提出的FusionMamba模块,包括它们的结构和所需的浮点运算(FLOPs)分析。

  • 损失函数:为了训练网络,使用了简单的L1损失函数。

FusionMamba模块相比于传统的图像融合方法具有以下几个优势:

  1. 全局感知能力:FusionMamba基于状态空间模型(SSM),特别是Mamba,这使得它能够捕捉到输入数据的全局上下文信息,而不仅仅是局部特征。这种全局感知能力有助于在图像融合过程中保留和整合更广泛的空间和光谱信息。

  2. 线性复杂度:与传统的基于Transformer的方法相比,FusionMamba模块保持了线性的计算复杂度,这使得它在处理大规模数据时更加高效。Transformer模型通常具有二次方的计算复杂度,这在大规模数据集上会导致显著的计算成本。

  3. 双输入结构:FusionMamba模块专门设计为支持双输入,这允许它有效地整合来自不同源的图像特征,例如空间特征和光谱特征。这种设计使得FusionMamba在融合不同类型的图像信息时更为灵活和有效。

  4. U形网络结构:FusionMamba采用了两个U形网络(空间U-Net和光谱U-Net),分别独立地提取空间和光谱特征。这种结构不仅有助于学习层次化的特征表示,而且还能够减少网络参数的数量,从而提高模型的训练和推理效率。

  5. 性能优越:根据论文中的实验结果,FusionMamba在多个图像融合任务上都达到了最先进的性能,这表明它在定量和定性评估方面都超越了现有的图像融合技术。

  6. 计算效率:FusionMamba模块在保持高性能的同时,其计算效率也高于传统的基于CNN和Transformer的方法。这使得FusionMamba更适合实时或资源受限的应用场景。

总的来说,FusionMamba通过结合SSM的优势,提供了一种在保持高效计算的同时能够有效融合和利用图像全局信息的新方法。这些优势使得FusionMamba在图像融合领域具有显著的潜力和应用价值。

总结:

FusionMamba通过结合Mamba模块到两个U形网络中,并创新性地提出了FusionMamba模块,有效地解决了图像融合中的全局信息提取和融合问题。实验结果证明了FusionMamba在多个数据集上的性能优越性,特别是在处理高光谱图像融合任务时。这项工作为图像融合领域提供了一种新的有效方法,并且由于其基于SSM的特性,它在计算效率方面具有显著优势。

### Coupled Mamba 耦合状态空间模型的实现方法 Coupled Mamba 是一种基于多模态融合的方法,旨在解决复杂场景下的多谱目标检测问题。该方法的核心思想是通过引入多模态历史状态来增强模型的表现力,并利用全局卷积核优化并行计算效率[^3]。 #### 1. 多模态融合机制 Coupled Mamba 的设计主要分为两大部分:**状态耦合** 和 **状态空间模型**。其中,状态耦合负责处理不同模态间的交互关系,而状态空间模型则定义了系统的动态演化过程。这种方法允许模型在多个时间步长上捕捉跨模态的相关性,从而提升对复杂环境的理解能力[^1]。 #### 2. 并行计算优化 为了克服传统 RNN 中因激活函数导致的状态转换瓶颈,Mamba 提出了无需激活函数的设计理念。这种特性使得中间结果可以通过迭代预计算的方式获得,进而支持高效的并行化操作。然而,在引入多模态信息后,Coupled Mamba 需要额外考虑如何保持并行化的优点。为此,论文中提出了适用于 Coupled Mamba 的全局卷积核设计方案,确保模型能够在保留高效推理的同时适应更复杂的输入结构。 以下是 Coupled Mamba 的伪代码表示: ```python def coupled_mamba(input_states, modalities): """ 输入参数: input_states (list): 不同模态的历史状态列表 modalities (int): 当前使用的模态数量 返回值: output_state: 经过多模态融合后的最终状态 """ # 初始化状态变量 fused_state = initialize_fused_state(modalities) # 执行状态耦合 for modality in range(modalities): current_modality_state = input_states[modality] fused_state += apply_coupling(current_modality_state, fused_state) # 更新状态空间模型 updated_state = update_state_space_model(fused_state) # 应用全局卷积核加速并行计算 final_output = apply_global_convolution(updated_state) return final_output ``` 上述代码展示了 Coupled Mamba 的核心逻辑流程,其中包括状态初始化、多模态耦合以及状态更新等关键环节。特别需要注意的是 `apply_global_convolution` 函数的应用,这是保障模型高性能的关键所在。 #### 3. 数据集与实验验证 尽管 Coupled Mamba 主要在恶劣天气条件下的多光谱物体检测领域进行了深入探索[^2],但其设计理念具有较强的通用性,可以扩展到其他涉及多模态数据的任务中。例如,在图像超分辨率重建方面,类似的多模态融合策略也可以用来改善生成质量并减少偏差[^4]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深研 AI Lab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值