关于谷歌广告竞价(RTB原理)及因素

       首先,明确一点,通过谷歌广告Google Adwords获取广告资源,采用的购买方式是RTB(RealTime Bidding),也就是实时竞价,属于程序化广告的一种。

图片

(作图不易,多多关注,转载需先问)

       RTB 是一种广告购买方式,广告主在广告展示的瞬间对广告位进行竞价。谷歌的显示广告网络(Google Display Network, GDN)和谷歌广告平台(Google Ads)支持 RTB。在 Google广告平台 上,广告主可以设置他们的出价策略,谷歌的系统会实时处理这些出价并决定哪些广告被展示。

       按谷歌官方的说法(https://support.google.com/google-ads/answer/1722122?hl=zh-Hans),广告是否展示取决于广告评级,广告评级又取决于多个因素:

① 出价 

② 广告和着陆页质量

③ 评级门槛

④ 竞争情况 

⑤ 用户搜索情境(相关性)

⑥ 素材&广告附加资源的影响

      很多很复杂,你可以简单理解为广告排名=出价* 质量得分*广告附加信息

图片

      出海营销笔记Zip是出海营销实战派,致力SEM营销干货输出,尤其是谷歌广告,如同ZIP压缩包将知识打包到一个文档共同学习,让你一篇文章精通谷歌广告。

图片

博客链接:https://semzip.com/

私聊合作:文章末尾二维码有联系方式

欢迎联系↓

图片

<think>好的,我需要回答用户关于广告显示规则及覆盖范围的问题,特别是在IT领域。首先,我得理清广告系统的基本工作原理,这可能涉及算法、数据分析和用户行为等方面。 根据引用[1]中的项目管理知识,广告系统的开发可能涉及多个过程组和知识领域,比如需求分析、系统设计、测试等。这可能意味着广告显示规则需要考虑项目管理的各个方面,如输入输出工具(ITTO)。 接下来,引用[2]提到的人脸检测器使用了CNN等网络结构,这可能类比到广告系统中使用的机器学习模型。广告投放可能依赖类似的算法来分析用户数据,确定目标受众。例如,通过用户浏览历史、点击行为等数据训练模型,预测哪些广告更可能被点击。 然后,引用[3]中的AI算法在医疗领域的应用展示了算法准确性和自动化的重要性。广告系统可能也需要高精度的模型来确保广告投放的相关性和有效性,同时自动化处理海量数据,实时调整广告策略。 关于覆盖范围,广告系统可能根据地理位置、设备类型、时段等因素进行定向投放。引用[4]的GitHub仓库可能包含相关代码示例,比如使用协同过滤或深度学习模型进行用户分群。 需要注意的是,广告显示的规则通常包括竞价排名(如Google Ads的AdRank)、质量得分(结合点击率和广告相关性)、预算控制等。覆盖范围则涉及广告能触达的用户群体大小和多样性,这依赖于数据收集的广度和模型的泛化能力。 可能的问题点:如何平衡精准投放与用户隐私?广告算法如何防止偏见?需要结合隐私保护技术(如差分隐私)和公平性评估机制。 最后,确保回答结构清晰,分点说明规则和范围,引用相关文献,并生成相关问题。</think>### 广告显示的规则及覆盖范围(IT领域) #### 一、广告显示的核心规则 1. **算法驱动的内容匹配** 广告系统通过机器学习模型(如协同过滤、深度学习)分析用户行为数据(浏览历史、点击记录等),将广告与用户兴趣匹配[^2]。例如,使用逻辑回归模型预测点击率(CTR),结合$CTR \times Bid$ 计算广告优先级。 2. **竞价与排名机制** 广告主通过实时竞价RTB)参与广告位竞争,系统根据广告质量得分(Quality Score)和出价综合排序。质量得分公式可表示为: $$ \text{AdRank} = \text{Bid} \times \text{Quality Score} $$ 其中质量得分由广告相关性、落地页体验等决定[^1]。 3. **频次与时段控制** 为防止用户疲劳,广告系统会限制同一广告对单个用户的曝光次数(如24小时内最多3次),并根据时段调整投放策略(如夜间降低竞价预算)。 #### 二、覆盖范围的影响因素 1. **定向条件** - **地理位置**:基于GPS或IP地址定位,例如向北京用户推送本地服务广告。 - **设备类型**:区分移动端、PC端,适配不同广告素材格式(如图片、视频)。 - **人群标签**:利用聚类算法(如K-means)划分用户群体,如“科技爱好者”“母婴用户”。 2. **数据覆盖广度** 广告系统依赖多源数据(社交媒体、搜索日志、第三方DMP),覆盖范围受数据采集能力和隐私合规限制。例如,GDPR要求用户数据需授权使用[^3]。 3. **媒体资源整合** 广告平台通过SSP(供应方平台)接入多个媒体资源(如网站、APP),覆盖范围取决于媒体合作数量及用户活跃度。 #### 三、技术实现示例(伪代码) ```python def ad_delivery(user_profile, ad_candidates): # 特征工程:提取用户兴趣向量 user_vector = model.predict(user_profile) # 计算广告匹配度 scores = [] for ad in ad_candidates: similarity = cosine_similarity(user_vector, ad.vector) rank_score = ad.bid * similarity scores.append((ad, rank_score)) # 按排名选择Top N广告 sorted_ads = sorted(scores, key=lambda x: x[1], reverse=True) return [ad for ad, score in sorted_ads[:3]] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值