IMPACT:肿瘤免疫在线分析数据库

生信碱移

肿瘤免疫在线分析数据库

IMPACT 是一个用户友好的平台,提供了更多数据集和功能,用于复杂的预测性和/或预后性生物标志物、相互作用效应及潜在生物机制的全面探索,从而简化了研究人员的生物信息学分析。

IMPACT: A web server for exploring immunotherapeutic predictive and cancer prognostic biomarkers

DOI:10.1002/ctm2.1354

为了提高免疫检查点抑制剂(ICIs)的临床应用效果,来自中国医学科学院的研究者开发了一个公共网络服务器IMPACT,文章发表于Clinical and Translational MedicineIF:10.6IMPACT-A web server for exploring immunotherapeutic predictive and cancer prognostic biomarkers,IMPACT: 一个用于探索免疫治疗预测性和癌症预后性生物标志物的网络服务器。该数据库旨在促进对预测或预后生物标志物、相互作用效应及生物机制的全面研究,整合了公共和自有数据集(网址为http://www.brimpact.cn/http://impact.brbiotech.com/)。

图片

▲ 图1:IMPACT概述。(A)IMPACT的示意图。(B)IMPACT与现有生物标志物探索工具的比较。

ICIs开启了癌症治疗的新时代,然而大多数ICI生物标志物由于数据有限和统计方法的局限,具有较低的普遍性能。目前,已有几种基于公共数据库的工具可用于探索潜在生物标志物,如CAMOIP、Cancer-Immu、CRI-iAtlas和cBioPortal。与这些工具相比,IMPACT独特之处在于允许用户通过选择突变变体类型来自定义生物标志物,并自动筛选连续性生物标志物的切点以及任何基因组内的突变或共突变,以及在更多数据集中进行包括自定义多变量、亚组和相互作用分析在内的更严格的关键分析(见图1B)。在原文中,作者演示了如何使用IMPACT来全面探索生物标志物

用户可以通过使用PredExplore和ProgExplore模块来分析基因改变与所有ICI和非ICI数据集中的生存率之间的关联,从而开始了解生物标志物的总体表现。每个数据集中的详细结果和元分析的森林图可以自动生成。特别是,这些模块允许用户自动探索任何基因组内的突变或共突变的预测或预后价值。以DNA损伤应答(DDR)途径改变为例(见图2A、B),结果表明,途径突变可能积累单个DDR基因突变的微小效应,从而观察到与ICIs的延长生存率显著相关。共突变通常用于探索基因之间的协同或相互排斥效应。利用IMPACT对KRAS/TP53/STK11的共突变分析显示,KRAS的预测效果取决于其他共突变基因的存在,这与以前的结果一致(见图2C至F)。

图片

▲ 图2:通路改变和共突变分析示例。(A)根据ATM突变的DNA损伤应答(DDR)通路基因的瀑布图。(B)DDR通路改变与无进展生存期(PFS)关联的元分析。(C)根据KRAS突变状态的STK11和TP53基因突变的瀑布图。(D)KRAS基因突变与PFS关联的元分析。(E)KRAS/TP53共突变与PFS关联的元分析。(F)KRAS/STK11共突变与PFS关联的元分析。

为了进一步探索感兴趣的生物标志物,用户可以通过在每个数据集中进行详细分析来验证其发现。与其他工具的类似功能相比,生存分析模块允许用户自由选择变异类型以定义有意义的突变状态,筛选连续变量的切点,并进行自定义的多变量和亚组分析以验证生物标志物的独立性。在此,作者使用PBRM1、bTMB和ATM作为例子来说明这些功能:① 突变类型。由于不同类型的突变通常会影响基因功能(例如,功能增益或丧失),因此在定义基因改变时考虑突变类型是必要的。例如,在肾癌中,报告显示PBRM1截断突变患者的总体生存期(OS)显著长于PBRM1非截断突变但非错义突变的患者。使用IMPACT得到了相同的结果(见图3A、B)。连续生物标志。对于连续性生物标志物,如基因表达和肿瘤突变负荷(TMB),探索选定截止值对生物标志物与生存率之间关联的影响至关重要。此前,一项研究未能证明基于预定义截止值的血液基TMB与OS的关联。使用IMPACT上的切点分析子模块,基于不同bTMB切点的危险比(HR)森林图显示bTMB倾向于与OS负相关(见图3C、D),这启发了使用最大体细胞等位基因频率修饰的bTMB来预测ICI结果的有价值工作。验证生物标志物的独立性。为了确定生物标志物是否独立于其他因素,可以在Cox回归和亚组分析子模块中进行多变量和亚组分析。方便的是,用户可以根据先前的知识自由选择混杂因素和分层因素,而不是固定因素(见图3E)。

图片

▲ 图3:生存分析和相互作用分析模块示例。(A)PBRM截断突变与Checkmate_025肾癌数据集中的总体生存(OS)关联。(B)PBRM1非同义突变与Checkmate_025肾癌数据集中的OS关联。(C)Gandara_2018数据集中bTMB与OS的危险比在不同截止值下的变化。(D)Gandara_2018数据集中bTMB与PFS的危险比在不同截止值下的变化。(E)Gandara_2018数据集中ATM突变与PFS的单变量和多变量Cox回归。(F)接受atezolizumab和docetaxel治疗的患者中ATM突变对OS的Kaplan-Meier曲线。

此外,用户可以实施IMPACT独有的相互作用分析模块,以确定潜在生物标志物是否预测免疫疗法的效果,方法是分析生物标志物和治疗组之间的相互作用效果。在这里,作者使用ATM和STK11来说明这一功能。通过分析肺腺癌的ICI数据库,ATM突变被报告为预测性生物标志物。然而,尚未确定它是否是特定于ICI的预测性生物标志物。相互作用分析模块的结果显示,ATM突变与仅接受ICI治疗的患者的延长生存期显著相关(而非其他治疗的患者),且交互作用的p值显著(见图3F),这表明ATM突变是针对ICI治疗的特定预测性生物标志物。相比之下,STK11突变与治疗组和对照组的较差生存率相关,这表明STK11突变是独立于治疗的预后性生物标志物。这一结果在先前的研究中未出现。

在通过上述分析识别出潜在的生物标志物后,免疫原性和肿瘤微环境(TME)模块为用户提供了一种简单的方法来分析免疫原性或免疫特征,帮助理解生物机制。在免疫原性模块中,用户可以分析基因表达/突变与TMB、新抗原和基因组不稳定性评分之间的相关性(见图4A–C)。此外,TME分析模块允许用户分析基因表达与肿瘤生成/免疫特征之间的相关性(见图4D–F)。

图片

▲ 图4:免疫原性和肿瘤微环境(TME)分析模块示例。(A)Hellmann_2018肺癌数据集中ATM非同义突变与肿瘤突变负荷(TMB)、新抗原和程序性细胞死亡蛋白配体1(PD-L1)表达的关联。(B)TCGA肺腺癌(LUAD)数据集中ATM非同义突变与基因组不稳定指标和免疫浸润特征的关联。(C)TCGA LUAD数据集中ATM非同义突变与肿瘤生成和免疫特征的关联。(D)TCGA LUAD数据集中NOTCH通路表达与免疫特征的相关性。(E)TCGA LUAD数据集中NOTCH通路表达与肿瘤生成特征的相关性。(F)TCGA LUAD数据集中CD8A表达高或低组的免疫通路表达热图。

尽管IMPACT为生物标志物探索提供了全面的功能(见原文补充表S4),但仍需要进一步的生物学或临床验证来确认这些已识别的生物标志物。以前,作者使用IMPACT注意到TGFBR2突变与免疫治疗后的生存期之间存在负相关(见图S2C)。随后,他们还报道了一个例子,一名携带TGFBR2突变的肺癌患者在接受ICI单药治疗后经历了超级进展。这些发现表明,IMPACT发现的生物标志物可能在临床上得到验证,显示了IMPACT在生物标志物探索中的潜在价值。

总的来说,IMPACT是一个用户友好的平台,提供了更多数据集和功能,用于复杂的预测性和/或预后性生物标志物、相互作用效应及潜在生物机制的全面探索,从而简化了研究人员的生物信息学分析。作者相信,随着长期的支持、持续的升级和优化,IMPACT将成为促进免疫治疗研究的受欢迎工具。

感兴趣的铁子可以试试

马上到年末了

大家好好加油收个尾

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值