介绍一款开源的自动驾驶仿真模拟器-Carla

大家好,我是李慢慢。

不管你是一个自动驾驶的算法工程师,还是仿真工程师,不管你是业界大佬还是小白,我都建议你了解甚至使用一下这个软件

目录:

0、前言

1、Carla简介

2、Carla的官方资源

3、Carla的安装

4、Carla的使用

0、前言

自动驾驶算法的调试和效果评测首先要在仿真环境中去做,因此,一个强大、灵活的仿真环境是开发、测试过程中必不可少的要素。我们在查找可用的仿真工具时主要关注以下几个特性:

  1. 开源,免费;

  2. 包含高速场景;

  3. 可以便捷的控制、切换场景的环境,且场景、环境尽可能的丰富与真实;

  4. 可以便捷的控制、切换场景内移动物体(如车辆、行人等)的行为模式,且行为模式尽可能的丰富与真实;

第1条基本上把商用的软件排除掉了,如PreScan,VTD等······。事实上,在论文库的检索过程中,CARLA的出现频率是最高的,因此本文将介绍该软件及其安装和使用方法。

1、Carla简介

Carla 是一个开源的模拟器,可以模拟真实的交通环境,行人行为,汽车传感器信号等等。如下图所示,模拟器使用C++ 和虚幻 (Unreal) 引擎构成,使用者可以通过 Python API 使用 Python 脚本代码对模拟器的环境进行操作和控制。Carla 的底层架构如下图所示。

 

Carla 是一个自动驾驶仿真框架。具有如下特点:

  • 环境基于 Unreal Engine 4 开发;

  • 完全开源;

  • 包含 C++ 和 Python 全部开放接口;

  • 以 Carla 仿真环境为核心构建的仿真生态链逐步支持各种自动驾驶仿真标准或规则,比如支持 OpenDrive 和 OpenScenario 标准,支持 Responsibility Sensitive Safety(RSS);

  • 以 Carla 仿真环境为核心构建的仿真生态链逐步支持各种自动驾驶工具或者框架比如 ROS, SUMO,PTV-Vissim 等;

  • 产品更新迭代速度相对较快;

  • 有英特尔,丰田,通用等大公司支持;

2、Carla的官方资源

Carla的官网:

http://carla.org/

Carla官方文档:

https://carla.readthedocs.io/en/latest/

Carla中文站:

国内的一个网站,会有一些资料及咨询,大家也可以看看。

https://bbs.carla.org.cn

Carla源码下载:

https://github.com/carla-simulator/carla/releases

上面的链接很难打开,更难下载,如果有需要的,可以后访问如下网盘链接下载:

Carla下载百度网盘链接:

https://pan.baidu.com/s/1fi7gZPHwzVhOaZjn00oSTA

百度网盘提取码:clmm

注:网盘里有最新的版本,含Windows版、Ubuntu版、预编译版、源代码版等等。后期将陆续放进去最新的地图、软件版本等内容,敬请期待,持续关注。若链接失效,请后台联系。

3、Carla的安装

首先,Carla的安装是个巨麻烦的事情。请诸君做好心理准备,特别是Ubuntu下的编译版,请您至少预留2天时间,准备好一个性能极好的电脑(CPU、GPU、内存都要好,可从官方教程查看硬件需求),且网速足够好,才能搞定。具体的安装过程,请一步一步按照官网的教程来,网上的野路子贼多,坑也贼多,只有官方教程才是最终解决方案。

我这里偷个懒,直接使用了Windows的预编译版,下载下来压缩包,解压后双击即可使用。

下载并解压:

双击即可打开:

打开后的样子:

4、Carla的使用

Carla用于自动驾驶仿真,核心语言是Python,徒手编写程序还是很难的,但我们不用重复造轮子,跟着examples里提供的案例,我们很快就能学会自己编写脚本来进行仿真。

如下是官方自带的python脚本案例,用来讲解Carla的Python API如何使用:

想要运行这些脚本,还需要简单安装一些特殊的python库,好在这些库都写在了【requirements.txt】文件里,我们运行下这个文件就行,如下:

安装代码:

pip install -r requirements.txt

安装完成后,就可以运行示例代码了,比如:

python automatic_control.py

会打开一个如下的界面,程序随机创建一辆车,在地图中随机自动驾驶:

我在b站以前录制了两个视频,大家也可去b站搜了看看:

Carla软件的下载安装及初始界面介绍

Carla:运行官方自带的案例-快捷方式介绍

后期也可能会继续录制视频,发布一些更简单的脚本,大家持续关注哦。

本期先分享到这里,学习愉快。

瑞斯拜。

本文转载自微信公众号-车路慢慢,原文链接如下

介绍一款开源的自动驾驶仿真模拟器-Carla

03-18
<think>嗯,用户想了解Carla自动驾驶仿真平台的相关信息。首先,我需要确定用户的具体需求是什么。他们可能对Carla的基本功能、安装步骤、如何导入自定义地图和车辆,以及如何使用它进行仿真感兴趣。根据提供的引用内容,Carla是一个开源自动驾驶仿真平台,支持传感器模拟、交通场景构建和多语言接口,比如Python和C++。用户可能还想知道如何开始使用Carla,是否有相关的教程或文档。 接下来,我需要整理引用中的信息。引用[1]提到了Carla的安装步骤,包括Carla 0.9.13和Carla-ros-bridge的安装,以及如何导入自定义地图和车辆。引用[2]提供了更多的教程链接,涵盖核心概念、车辆检测和交通管理等内容。引用[3]讨论了如何将Carla与LabVIEW结合使用,搭建仿真平台,特别是视频流的传输。 用户的问题比较广泛,可能需要一个概述性的介绍,涵盖Carla的主要特点、安装方法、核心功能以及学习资源。同时,根据系统指令,需要生成相关问题,帮助用户进一步探索。比如,如何安装Carla,如何导入自定义地图,如何与ROS桥接等。 需要注意的是,回答中要使用正确的中文,并且按照格式要求,行内数学公式用$...$,独立公式用$$...$$,但在这个问题中可能不需要数学公式。另外,引用标识要自然地添加到段落末尾,比如在提到安装步骤时引用[^1],提到教程时引用[^2]。 可能还需要检查是否有遗漏的信息,比如Carla的版本更新、支持的传感器类型,或者与其他工具如ROS的集成。根据引用内容,Carla支持ROS桥接,并且有官方文档和系列教程可供参考,这些都应该包含在回答中。 最后,生成的相关问题应该引导用户深入了解Carla的不同方面,比如安装问题、功能扩展、与其他工具的集成,以及实际应用案例。确保问题覆盖用户可能感兴趣的各个方向,帮助他们进一步学习。</think>### Carla 自动驾驶仿真平台介绍 Carla(Car Learning to Act)是一个开源自动驾驶仿真平台,专为自动驾驶算法研发和测试设计。其核心功能包括高精度传感器模拟、动态交通场景构建、多天气条件支持,以及多语言接口(如Python、C++)的集成[^2]。 #### 1. **核心功能** - **传感器仿真**:支持激光雷达(LiDAR)、摄像头、雷达等多种传感器模拟,数据格式与真实传感器一致。 - **动态场景控制**:可通过API实时调整交通流、天气(雨、雾、昼夜变化)和行人行为。 - **多平台兼容**:提供ROS桥接工具(`carla-ros-bridge`)[^1],支持与机器人操作系统无缝集成。 - **自定义地图与车辆**:用户可导入OpenDrive格式的高精度地图,并添加定制化3D车辆模型[^3]。 #### 2. **安装与部署** - **基础安装**: - 从官网下载预编译的Carla 0.9.13版本,解压后运行启动脚本[^1]。 - 通过Python的`pip`安装`carla`客户端库:`pip install carla`[^2]。 - **ROS桥接**: ```bash git clone https://github.com/carla-simulator/ros-bridge.git catkin_make ``` 支持与ROS节点通信,实现传感器数据流传输。 #### 3. **典型应用场景** - **算法验证**:测试感知(如目标检测)、规划(路径生成)和控制(车辆动力学)算法。 - **极端条件测试**:模拟暴雨、浓雾等恶劣天气对传感器性能的影响。 - **多车协同仿真**:通过Traffic Manager模块实现复杂交通流交互。 #### 4. **学习资源** - **官方文档**:涵盖API详解、场景示例和调试工具(http://carla.org/)。 - **进阶教程**: -Carla遇见C++】优化高性能算法[^1]。 -Carla Robotaxi仿真】构建自动驾驶出租车全流程。 - LabVIEW集成方案:通过视频流传输实现硬件在环测试[^3]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值