目录
一、规控算法问题
1、LQR和MPC了解吗?二者的区别是什么?
线性二次调节器(Linear Quadratic Regulator,简称LQR)和模型预测控制(Model Predictive Control,简称MPC)都是优化控制中经常用到的方法,它们都是用来找到一个优化的控制序列的。
LQR:LQR是一种最优控制策略,它对系统的状态进行线性化,并寻找一个使得二次型目标函数值最小的控制输入。目标函数通常由系统的状态误差和控制输入的大小组成。LQR通过解Riccati方程得到最优反馈增益。
MPC: MPC是一种基于模型预测的控制策略,它会在每一个时刻,对未来一段时间进行预测,并根据预测和一定的优化目标求解控制输入。然后只应用预测时段内的第一个控制输入,接着在下一个时刻再按同样的步骤进行预测和求解。这就使得MPC具有处理系统约束和非线性的能力。
两者区别:
①线性化方式:LQR是在整个控制过程应用线性化,而MPC是在每一步中线性化。
②处理约束:LQR无法直接处理系统的约束,而MPC能较好地处理系统的约束。
③预测计算:LQR没有前瞻计算过程,而MPC则有一个预测的过程。
④Riccati方程:LQR通过解Riccati方程得到最优