自动驾驶规控算法工程师面试问题

本文探讨自动驾驶中的关键控制算法,对比LQR与MPC的区别,解析自动控制的时域与频域分析,指导如何根据系统特性选择合适的控制算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、规控算法问题

一、规控算法问题

1、LQR和MPC了解吗?二者的区别是什么?

线性二次调节器(Linear Quadratic Regulator,简称LQR)和模型预测控制(Model Predictive Control,简称MPC)都是优化控制中经常用到的方法,它们都是用来找到一个优化的控制序列的。

LQR:LQR是一种最优控制策略,它对系统的状态进行线性化,并寻找一个使得二次型目标函数值最小的控制输入。目标函数通常由系统的状态误差和控制输入的大小组成。LQR通过解Riccati方程得到最优反馈增益。

MPC: MPC是一种基于模型预测的控制策略,它会在每一个时刻,对未来一段时间进行预测,并根据预测和一定的优化目标求解控制输入。然后只应用预测时段内的第一个控制输入,接着在下一个时刻再按同样的步骤进行预测和求解。这就使得MPC具有处理系统约束和非线性的能力。

两者区别:

①线性化方式:LQR是在整个控制过程应用线性化,而MPC是在每一步中线性化。

②处理约束:LQR无法直接处理系统的约束,而MPC能较好地处理系统的约束。

③预测计算:LQR没有前瞻计算过程,而MPC则有一个预测的过程。

④Riccati方程:LQR通过解Riccati方程得到最优

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值