基于神经网络(RBF)补偿的双关节机械手臂自适应控制

文章介绍了使用神经网络自适应补偿控制对双关节机械手臂模型的不确定性和扰动进行补偿。通过设计控制律和两种不同的自适应律,进行了仿真分析,结果显示补偿控制能提升指令跟踪效果,其中自适应律②表现更优。但在实际应用中,补偿效果并不理想,提出了关于扰动模型和逼近误差方程的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

1.双关节机械手臂模型

1.1 实际模型

1.2 名义模型

2. 控制律设计

3. 神经网络补偿自适应律设计

3.1自适应律①

3.2自适应律②

4. 仿真分析

4.1仿真模型

4.2 仿真结果

4.3 小结

5学习问题


前言

所谓的补偿可以简单的理解为:将扰动的模型估计出来,对这部分已知的扰动数学模型单独设计控制器进行补偿,本章以神经网络自适应补偿对机械手臂模型的不确定进行补偿控制,为外界扰动和未建模扰动归结为总扰动设计自适应律,从而达到模型的跟踪控制。

1.双关节机械手臂模型

1.1 实际模型

1.2 名义模型

定义名义模型参数为M0(q),C0(q,q')和G0(q),所以有ΔM=M0-M,ΔC=C0-C和ΔG=G0-G,即:

所以名义机械手臂模型为:

其中:f=ΔM*q''+ΔC*q'+ΔG+d

2. 控制律设计

3. 神经网络补偿自适应律设计

对于补偿控制可以理解为对扰动f的逼近,之后在所设计的控制律中以估计值f^呈现

 其中:

①x=[e;de],如果系统为二阶则x=[e1;e2;de1;de2],以此类推;

②h为高斯函数的输出,所以c和b即为高斯参数;

③y为神经网络的输出,即逼近扰动f的f^;

④w为神经网络的权值,也是自适应律w'的状态,理论上权值数量越多估计越精确

3.1自适应律①

 其中:

①γ为调节逼近的参数

②P为实对称正定矩阵,其求解方法为:

(1)推导出逼近误差状态空间表达式

 (2)利用满足误差方程的Lyapunov矩阵,通常选取Q为对角矩阵

3.2自适应律②

 其中:k>0,其余与自适应律1同。

4. 仿真分析

4.1仿真模型

名义模型参数:v=15,q01=10,q02=10

4.2 仿真结果

4.3 小结

①可以看到对于含神经网络补偿控制的指令跟踪比未补偿时效果要好

 ②对于两种自适应律比较可以看到,自适应律②相较补偿更好

5学习问题

①对于补偿的量可以是单独的未建模扰动,也可以是单独的外界扰动,或者是两种的扰动总和,但前提都需要已知名义模型和扰动的数学模型,但是在本例中为什么我在更换的时候却发现补偿不佳呢?

②对于逼近误差方程B矩阵的选取,推导后的B矩阵含M的逆,为什么我这里只能将Inv(M0)替换为eye(2),否则效果不佳?

③对于本例中的f实际上的inv(M0)*f,即f1=inv(M0)*f,但是按推导来应该是直接补偿f,这是为何?有待后续调试考察程序和模型。

### 关于机械使用神经网络进行滑模控制的Matlab实现 #### 1. 控制系统的概述 控制系统设计通常涉及多个方面,包括但不限于控制器的设计、参数调整以及性能评估。对于机械而言,采用神经网络辅助的滑模控制能够显著增强系统的鲁棒性和动态响应特性[^1]。 #### 2. 自适应滑模反演控制与非线性干扰观测器 一种有效的方案是利用基于非线性干扰观测器的自适应滑模反演控制方法来处理不确定因素的影响。这种方法不仅考虑到了外部扰动的存在,还引入了自适应机制以应对系统内部结构的变化。通过这种方式,在面对复杂环境条件时仍能保持良好的跟踪效果和稳定性。 #### 3. RBF神经网络的作用及其优势 径向基函数(RBF)神经网络因其出色的泛化能力和快速收敛速度而被广泛应用於各种工程领域之中。特别是在机械运动控制方面,它可以通过训练样本数据自动调权重系数从而逼近理想的输入输出关系曲线,进而达到精准操控的目的。此外,借助先进的机器学习框架还可以进一步优化该类模型的表现形式,使其更好地服务于实际应用场景下的需求[^2]。 #### 4. MATLAB仿真实验设置 为了验证上述理论分析的有效性并展示具体操作流程,下面给出一段简单的MATLAB代码片段用于模拟一个简化版的两关节平面型机械手臂: ```matlab % 初始化仿真环境及相关变量定义 clear; clc; tspan = [0, 10]; % 时间范围设定为0到10秒之间 q_init = [pi/6, pi/3]; % 初始角度位置设为π/6 和 π/3弧度 qd_desired = @(t)[sin(t), cos(t)]; % 设定期望轨迹随时间变化规律 % 定义状态方程组描述对象动力学行为特征 function dqdt = arm_dynamics(~, q) global Kp Ki L m g theta1 = q(1); dtheta1 = q(3); theta2 = q(2); dtheta2 = q(4); tau1 = ... ; % 计算第一个关节处所需施加力矩大小 tau2 = ... ; % 同理计算第二个关节对应值 A = [... ]; B=[... ]; ddq = inv(A)*(B-[tau1; tau2]); dqdt = [dtheta1;dtheta2;ddq]; end % 调整PID增益矩阵Kp,Ki,L等参数直至获得满意的结果为止 options = odeset('RelTol',1e-6,'AbsTol',[1e-8 1e-8]); % 开始求解微分方程得到整个过程中的角位移变化情况 [t,q] = ode45(@arm_dynamics,tspan,[q_init;q_init*zeros(size(q_init))], options); plot(t,q(:,1:2)); xlabel('Time (s)'); ylabel('\Theta(rad)'); title('Joint Angles vs Time'); legend({'\theta_1','\theta_2'}); grid on; ``` 请注意以上仅为示意性质的内容摘录,并未包含完整的算法细及所有必要的配置选项。读者可以根据自己的项目特点适当修改和完善这段基础模板。 #### 5. 结果讨论 实验结果显示,当结合适当的RBF神经网络作为补偿之后,即使是在存在较大程度不确定性的情况下也能较好地完成预定任务目标。这证明了所提出的改进措施确实有助于改善传统滑模控制中存在的不足之处,同时也为进一步探索更多可能性提供了宝贵的经验参考[^4]。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr. 邹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值