自动控制原理笔记-控制系统的数学模型

本文详细介绍了控制系统建模的方法,包括解析法和实验法,重点讲解了微分方程在控制系统中的应用。此外,还阐述了线性定常微分方程的求解及非线性系统的线性化技巧。拉普拉斯变换作为重要的数学工具,其概念、常用变换及性质也被详细阐述,并展示了如何利用拉普拉斯变换解微分方程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

建模方法

控制系统的数学模型——微分方程:

将方框图变为具体公式:

非线性系统微分方程的线性化:

线性定常微分方程的求解:

拉普拉斯变换的有关概念:

复数的有关概念:

拉氏变换的定义:

一些常用的拉普拉斯变换:

拉普拉斯变换的几个重要性质:

用拉普拉斯变换解微分方程:

小结:


建模方法

1,解析法:根据系统工作所依据的物理定律列写运动方程

2,实验法:黑盒子,给系统施加某种测试信号,记录输出响应,并套用数学模型


控制系统的数学模型——微分方程:

满足叠加原理就是线性

要会区分线性非线性,定常和时变


将方框图变为具体公式:

非线性系统微分方程的线性化:

线性定常微分方程的求解:


拉普拉斯变换的有关概念:

复数的有关概念:

复数的共轭:实部不变虚部取反

若一个复函数F(s)在s点的各阶导数都存在,则F(s)在s点解析

拉氏变换的定义:

一些常用的拉普拉斯变换:

在这里插入图片描述

 

拉普拉斯变换的几个重要性质:

【拉普拉斯变换】2. 拉普拉斯变换的性质_MR_普罗米修斯的博客-CSDN博客_拉普拉斯变换的性质

 

用拉普拉斯变换解微分方程:

先对原式进行拉普拉斯变换,再写出Y(s),再对Y(s)进行反变换

小结:

通过元件图建立微分方程

线性定常微分方程的特点

非线性方程的线性化

微分方程求解

拉普拉斯变换

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vizio<

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值