深度学习模型部署学习一

本文介绍了深度学习模型的部署流程,从PyTorch创建和加载超分辨率模型SRCNN,然后转换为ONNX中间表示,最后通过ONNXRuntime进行推理,实现模型的部署。关键步骤包括模型结构转换、ONNX模型验证和使用ONNXRuntime运行模型。
摘要由CSDN通过智能技术生成

深度学习模型部署

学习链接:模型部署入门教程(一):模型部署简介

写在前面: 本文档为学习上述链接的相关记录,基本内容一致,仅用于学习用途,若侵权请联系我删除

1 为什么需要部署?

在软件工程中,部署指把开发完毕的软件投入使用的过程,包括环境配置、软件安装等步骤。对于深度学习模型来说,模型部署指让训练好的模型在特定环境中运行的过程。

2 部署难题

  1. 运行模型所需的环境难以配置。深度学习模型通常是由一些框架编写,比如 PyTorch、TensorFlow。由于框架规模、依赖环境的限制,这些框架不适合在手机、开发板等生产环境中安装。

  2. 深度学习模型的结构通常比较庞大,需要大量的算力才能满足实时运行的需求。模型的运行效率需要优化。

3 部署流程

在这里插入图片描述
step1. 使用任意一种深度学习框架来定义网络结构,并通过训练确定网络中的参数。

step2. 将模型的结构和参数转换成一种只描述网络结构的中间表示,一些针对网络结构的优化会在中间表示上进行。

step3. 用面向硬件的高性能编程框架(如 CUDA,OpenCL)编写,能高效执行深度学习网络中算子的推理引擎会把中间表示转换成特定的文件格式,并在对应硬件平台上高效运行模型

4 实战模型部署

用 PyTorch 实现一个超分辨率模型,并把模型部署到 ONNX Runtime 推理引擎上。

4.1 创建pytorch模型

  1. 创建一个有 PyTorch 库的 Python 编程环境
# 创建预安装 Python 3.7 的名叫 deploy 虚拟环境 
conda create -n deploy python=3.7 -y 
# 进入虚拟环境 
conda activate deploy 
# 安装 cuda 11.3 的 PyTorch 
conda install pytorch torchvision cudatoolkit=11.3 -c pytorch
# 或者安装 cpu 版本的 PyTorch 
conda install pytorch torchvision cpuonly -c pytorch

# 安装需要的第三方库
# 安装 ONNX Runtime, ONNX, OpenCV 
pip install onnxruntime onnx opencv-python
  1. 创建一个超分辨率模型SRCNN
import os
import cv2
import numpy as np
import requests
import torch
import torch.onnx
from torch import nn


# 定义的超分辨率网络结构
class SuperResolutionNet(nn.Module):
    def __init__(self, upscale_factor):
        super().__init__()
        self.upscale_factor = upscale_factor
        self.img_upsampler = nn.Upsample(
            scale_factor=self.upscale_factor,
            mode='bicubic',
            align_corners=False)

        self.conv1 = nn.Conv2d(3, 64, kernel_size=9, padding=4)
        self.conv2 = nn.Conv2d(64, 32, kernel_size=1, padding=0)
        self.conv3 = nn.Conv2d(32, 3, kernel_size=5, padding=2)

        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.img_upsampler(x)
        out = self.relu(self.conv1(x))
        out = self.relu(self.conv2(out))
        out = self.conv3(out)
        return out


# 初始化模型参数
def init_torch_model():
    torch_model = SuperResolutionNet(upscale_factor=3)
    state_dict = torch.load('srcnn.pth')['state_dict']

    # 加载模型参数
    for old_key in list(state_dict.keys()):
        new_key = '.'.join(old_key.split('.')[1:])
        state_dict[new_key] = state_dict.pop(old_key)

    torch_model.load_state_dict(state_dict)
    torch_model.eval()
    return torch_model


if __name__ == '__main__':

    # 下载权重文件.pth 和 测试图片
    urls = [
        'https://download.openmmlab.com/mmediting/restorers/srcnn/srcnn_x4k915_1x16_1000k_div2k_20200608-4186f232.pth',
        'https://gimg2.baidu.com/image_search/src=http%3A%2F%2Fimg.mp.itc.cn%2Fupload%2F20170604%2F10c6fad2080f438bae1ce98b0d07eed2_th.jpg&refer=http%3A%2F%2Fimg.mp.itc.cn&app=2002&size=f9999,10000&q=a80&n=0&g=0n&fmt=auto?sec=1660440355&t=ba210d286709983734a43f3451c4629e']
    names = ['srcnn.pth', 'face.png']
    for url, name in zip(urls, names):
        if not os.path.exists(name):
            open(name, 'wb').write(requests.get(url).content)

    model = init_torch_model()
    input_img = cv2.imread('face.png').astype(np.float32)

    # 输入图片格式转换:HWC to NCHW
    input_img = np.transpose(input_img, [2, 0, 1])
    input_img = np.expand_dims(input_img, 0)

    # 推理
    torch_output = model(torch.from_numpy(input_img)).detach().numpy()

    # 推理结果转换到图片格式:NCHW to HWC
    torch_output = np.squeeze(torch_output, 0)
    torch_output = np.clip(torch_output, 0, 255)
    torch_output = np.transpose(torch_output, [1, 2, 0]).astype(np.uint8)

    # 保存推理图片
    cv2.imwrite("face_torch.png", torch_output)

SRCNN 先把图像上采样到对应分辨率,再用 3 个卷积层处理图像。为了方便起见,我们跳过训练网络的步骤,直接下载模型权重(由于 MMEditing 中 SRCNN 的权重结构和我们定义的模型不太一样,我们修改了权重字典的 key 来适配我们定义的模型),同时下载好输入图片。为了让模型输出成正确的图片格式,我们把模型的输出转换成 HWC 格式,并保证每一通道的颜色值都在 0~255 之间。如果脚本正常运行的话,一幅超分辨率的人脸照片会保存在 “face_torch.png” 中。

在 PyTorch 模型测试正确后,我们来正式开始部署这个模型。

4.2 中间表示 - ONNX

ONNX (Open Neural Network Exchange)是 Facebook 和微软在2017年共同发布的,用于标准描述计算图的一种格式。目前,在数家机构的共同维护下,ONNX 已经对接了多种深度学习框架和多种推理引擎。因此,ONNX 被当成了深度学习框架到推理引擎的桥梁,就像编译器的中间语言一样。由于各框架兼容性不一,我们通常只用 ONNX 表示更容易部署的静态图。

  1. 把 PyTorch 的模型转换成 ONNX 格式的模型
# 这里的尺寸需要和模型的输入一致
# 紧接上文中的代码
x = torch.randn(1, 3, 718, 640)
 
with torch.no_grad(): 
    torch.onnx.export( 
        model, 
        x, 
        "srcnn.onnx", 
        opset_version=11, 
        input_names=['input'], 
        output_names=['output'])

其中,torch.onnx.export 是 PyTorch 自带的把模型转换成 ONNX 格式的函数。
参数说明

  • model:要转换的模型
  • x:模型的任意一组输入
  • “srcnn.onnx”:导出的 ONNX 文件的文件名。
  • opset_version : ONNX 算子集的版本。深度学习的发展会不断诞生新算子,为了支持这些新增的算子,ONNX会经常发布新的算子集,目前已经更新15个版本。我们令 opset_version = 11,即使用第11个 ONNX 算子集,是因为 SRCNN 中的 bicubic (双三次插值)在 opset11 中才得到支持。
  • input_names:输入tensor 的名称,后面会用。
  • output_names:输出tensor的名称,后面会用。

为什么需要为模型提供一组输入呢? 这涉及到 ONNX 转换的原理。从 PyTorch 的模型到 ONNX 的模型,本质上是一种语言上的翻译。直觉上的想法是像编译器一样彻底解析原模型的代码,记录所有控制流。但我们通常只用 ONNX 记录不考虑控制流的静态图。因此,PyTorch 提供了一种叫做追踪(trace)的模型转换方法:给定一组输入,再实际执行一遍模型,即把这组输入对应的计算图记录下来,保存为 ONNX 格式。export 函数用的就是追踪导出方法,需要给任意一组输入,让模型跑起来。我们的测试图片是三通道,256x256大小的,这里也构造一个同样形状的随机张量。

如果上述代码运行成功,目录下会新增一个"srcnn.onnx"的 ONNX 模型文件。

  1. 验证onnx模型文件是否正确
import onnx 
 
onnx_model = onnx.load("srcnn.onnx") 
try: 
    onnx.checker.check_model(onnx_model) 
except Exception: 
    print("Model incorrect") 
else: 
    print("Model correct")

其中,onnx.load 函数用于读取一个 ONNX 模型。onnx.checker.check_model 用于检查模型格式是否正确,如果有错误的话该函数会直接报错。我们的模型是正确的,控制台中应该会打印出"Model correct"。

接下来,让我们来看一看 ONNX 模型具体的结构是怎么样的。我们可以使用 Netron (开源的模型可视化工具)来可视化 ONNX 模型。把 srcnn.onnx 文件从本地的文件系统拖入网站,即可看到如下的可视化结果:

在这里插入图片描述

  • 点击 input 或者 output,可以查看 ONNX 模型的基本信息,包括模型的版本信息,以及模型输入、输出的名称和数据类型。
  • 点击某一个算子节点,可以看到算子的具体信息。

每个算子记录了算子属性、图结构、权重三类信息。

  • 算子属性信息即图中 attributes 里的信息,对于卷积来说,算子属性包括了卷积核大小(kernel_shape)、卷积步长(strides)等内容。这些算子属性最终会用来生成一个具体的算子。
  • 图结构信息指算子节点在计算图中的名称、邻边的信息。对于图中的卷积来说,该算子节点叫做 Conv_2,输入数据叫做 11,输出数据叫做 12。根据每个算子节点的图结构信息,就能完整地复原出网络的计算图。
  • 权重信息指的是网络经过训练后,算子存储的权重信息。对于卷积来说,权重信息包括卷积核的权重值和卷积后的偏差值。点击图中 conv1.weight, conv1.bias 后面的加号即可看到权重信息的具体内容。

现在,我们有了 SRCNN 的 ONNX 模型

4.3 推理引擎 -ONNX Runtime

ONNX Runtime 是由微软维护的一个跨平台机器学习推理加速器,也就是我们前面提到的”推理引擎“。
ONNX Runtime 是直接对接 ONNX 的,即 ONNX Runtime 可以直接读取并运行 .onnx 文件, 而不需要再把 .onnx 格式的文件转换成其他格式的文件。也就是说,对于 PyTorch - ONNX - ONNX Runtime 这条部署流水线,只要在目标设备中得到 .onnx 文件,并在 ONNX Runtime 上运行模型,模型部署就算大功告成了。

通过刚刚的操作,我们把 PyTorch 编写的模型转换成了 ONNX 模型,并通过可视化检查了模型的正确性。最后,让我们用 ONNX Runtime 运行一下模型,完成模型部署的最后一步。

ONNX Runtime 提供了 Python 接口。接着刚才的脚本,我们可以添加如下代码运行模型:

import cv2
import onnxruntime
import numpy as np

input_img = cv2.imread('face.png').astype(np.float32)
# HWC to NCHW
input_img = np.transpose(input_img, [2, 0, 1])
input_img = np.expand_dims(input_img, 0)

ort_session = onnxruntime.InferenceSession("srcnn.onnx")
ort_inputs = {'input': input_img}
ort_output = ort_session.run(['output'], ort_inputs)[0]

ort_output = np.squeeze(ort_output, 0)
ort_output = np.clip(ort_output, 0, 255)
ort_output = np.transpose(ort_output, [1, 2, 0]).astype(np.uint8)
cv2.imwrite("face_ort.png", ort_output)

代码解析:

  • onnxruntime.InferenceSession用于获取一个 ONNX Runtime 推理器,其参数是用于推理的 ONNX 模型文件。
  • 推理器的 run 方法用于模型推理,其第一个参数为输出张量名的列表,第二个参数为输入值的字典。
  • 其中输入值字典的 key 为张量名,value 为 numpy 类型的张量值。输入输出张量的名称需要和torch.onnx.export 中设置的输入输出名对应

如果代码正常运行的话,另一幅超分辨率照片会保存在"face_ort.png"中。这幅图片和刚刚得到的"face_torch.png"是一模一样的。这说明 ONNX Runtime 成功运行了 SRCNN 模型,模型部署完成了!以后有用户想实现超分辨率的操作,我们只需要提供一个 “srcnn.onnx” 文件,并帮助用户配置好 ONNX Runtime 的 Python 环境,用几行代码就可以运行模型了。或者还有更简便的方法,我们可以利用 ONNX Runtime 编译出一个可以直接执行模型的应用程序。我们只需要给用户提供 ONNX 模型文件,并让用户在应用程序选择要执行的 ONNX 模型文件名就可以运行模型了。

总结

仅仅采用了静态输入的方式导出onnx;需要匹配模型导出时指定的输入尺寸。

相关知识点:

  • 模型部署,指把训练好的模型在特定环境中运行的过程。模型部署要解决模型框架兼容性差和模型运行速度慢这两大问题。
  • 模型部署的常见流水线是“深度学习框架-中间表示-推理引擎”。其中比较常用的一个中间表示是 ONNX。
  • 深度学习模型实际上就是一个计算图。模型部署时通常把模型转换成静态的计算图,即没有控制流(分支语句、循环语句)的计算图。
  • PyTorch 框架自带对 ONNX 的支持,只需要构造一组随机的输入,并对模型调用 torch.onnx.export 即可完成 PyTorch 到 ONNX 的转换。
  • 推理引擎 ONNX Runtime 对 ONNX 模型有原生的支持。给定一个 .onnx 文件,只需要简单使用 ONNX Runtime 的 Python API 就可以完成模型推理。
### 回答1: 要调用CPU运行深度学习任务,需要使用适当的深度学习库,例如TensorFlow、PyTorch或Keras。这些库都提供了对CPU和GPU的支持,因此可以在没有GPU的情况下使用CPU运行深度学习任务。通常,使用这些库时,可以将模型的计算图构建为静态图或动态图,并使用优化器对模型进行训练。为了确保性能,可以使用诸如批量归一化和数据增强等技术来预处理输入数据。最后,可以使用训练好的模型进行预测或推理,以获得期望的结果。 ### 回答2: 要调用CPU来运行深度学习,首先需要安装适当的软件来支持。常见的深度学习框架如TensorFlow或PyTorch均提供CPU版本,可以根据自己的需求选择其中一个框架。 然后,需要安装相应的编程环境和依赖库。在安装了框架后,通常会包含一些Python库,例如NumPy和Pandas等。确保这些库正确安装并与所选的框架兼容。 接下来,可以编写代码来加载和预处理数据。借助框架的API,可以轻松地读取、处理和转换数据,以便于模型训练和评估。此外,还可以进行必要的数据增强操作,以增加数据的多样性。 在准备好训练数据后,可以定义模型架构。深度学习模型由不同类型的神经网络层组成,可以根据需要选择合适的层类型,并设置其参数和超参数。这些层将帮助模型学习输入数据的特征并进行预测。 接下来,可以编写训练代码。使用框架提供的优化器和损失函数,可以定义训练过程中的优化目标,并利用数据进行模型的迭代训练。这个过程需要指定训练的批次大小、迭代次数以及学习率等超参数。 当训练完成后,可以使用训练得到的模型对新数据进行预测。这可以通过加载模型并将数据输入到模型中来实现。 需要注意的是,相比于使用GPU来运行深度学习任务,使用CPU可能会有较慢的训练和推理速度。如果实际需求需要更高的性能,建议使用支持GPU的硬件加速。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值