【控制理论】深入理解鲁棒控制 | 高增益与高频率鲁棒控制器的设计与分析

写在前面:
🌟 欢迎光临 清流君 的博客小天地,这里是我分享技术与心得的温馨角落。📝
个人主页清流君_CSDN博客,期待与您一同探索 移动机器人 领域的无限可能。

🔍 本文系 清流君 原创之作,荣幸在CSDN首发🐒
若您觉得内容有价值,还请评论告知一声,以便更多人受益。
转载请注明出处,尊重原创,从我做起。

👍 点赞、评论、收藏,三连走一波,让我们一起养成好习惯😜
在这里,您将收获的不只是技术干货,还有思维的火花

📚 系列专栏:【运动控制】系列,带您深入浅出,领略控制之美。🖊
愿我的分享能为您带来启迪,如有不足,敬请指正,让我们共同学习,交流进步!

🎭 人生如戏,我们并非能选择舞台和剧本,但我们可以选择如何演绎 🌟
感谢您的支持与关注,让我们一起在知识的海洋中砥砺前行~~~



引言

  本篇博客讲解两种鲁棒控制器的设计:高增益鲁棒控制器(High Gain Robust Controller)高频率鲁棒控制器(High Frequency Robust Controller),内容整理自 B站知名up主 DR_CAN 的视频,作为博主的学习笔记,分享给大家共同学习。


一、系统描述与控制目标

  有以下系统:
x ˙ = f ( x ) + u \dot { x } = f ( x ) + u x˙=f(x)+u  目标是轨迹跟踪,令 x → x d x\rightarrow x_d xxd,即令 e = x d − x → 0 e = x d - x \rightarrow 0 e=xdx0 ,已知系统的 f ( x ) f(x) f(x) 是不确定的有界值,即 ∣ f ( x ) ∣ < ρ ( x ) | f ( x ) | < \rho ( x ) f(x)<ρ(x)。符合建立鲁棒控制器的基本条件。


二、误差的动态响应

  误差的动态响应
e ˙ = x ˙ d − x ˙ = x d − f ( x ) − u \dot { e } = \dot { x } _ { d } - \dot { x } = x _ { d } - f ( x ) - u e˙=x˙dx˙=xdf(x)u  不妨令
u = k e + x ˙ d + u a u x u = k e + \dot x _d + u_{ a u x} u=ke+x˙d+uaux  其中, u a u x u_{aux} uaux 意为辅助控制器。

  在上一篇博客中讲到,可令
u a u x = ρ e ∣ e ∣ u _ { a u x } = \rho \frac { e } { | e | } uaux=ρee  这种控制方法叫做滑模控制。其中, e ∣ e ∣ \frac { e } { | e | } ee 的图像如下所示:
在这里插入图片描述

  代入 u a u x u_{aux} uaux
e ˙ = − k e − f ( x ) − ρ e ∣ e ∣ \dot e = - k e - f ( x ) - \rho \frac { e } { | e | } e˙=kef(x)ρee  前面的部分 e ˙ = − k e \dot e = - k e e˙=ke是稳定的一种情况,在相平面的图形是这样的:
在这里插入图片描述

  后面的部分 − f ( x ) − ρ e ∣ e ∣ - f ( x ) - \rho \frac { e } { | e | } f(x)ρee 如果系统状态在滑模面上面或者下面时,想办法引到这条线上来,整体来说是在两个不同的模式中不断切换的。所以叫做滑膜控制,

  但同时可以看到这样的一种形式会存在问题,因为 e ∣ e ∣ \frac { e } { | e | } ee 不是 1 1 1 就是 − 1 -1 1,导致 u u u 可能会是这样:
在这里插入图片描述

  从正值到负值来回切换,这样会给执行器带来很大的挑战。所以这是值得注意的一点,比如设计自动驾驶使用这种控制器,方向盘位置会从原来的比如 8 8 8 点钟方向突然转到 4 4 4 点钟方向,然后再突然间转回去,这是需要避免的情况。

下面介绍另外两种不同的控制器设计方法:

  • 高增益鲁棒控制器(High gain)

  • 高频率鲁棒控制器(high frequency)


三、高增益鲁棒控制器

3.1 设计理念

  对于高增益鲁棒控制器来说,它的理念就是用足够大的输入抵消不确定性。

3.2 控制器形式

U a u x 2 = 1 ε ρ 2 e U _ { a u x 2 } = \frac { 1 } { \varepsilon } \rho ^ { 2 } e Uaux2=ε1ρ2e  表达式中有平方项,所以可以预想到它的输入非常大,当然 ε \varepsilon ε 都是大于 0 0 0 的。

3.3 稳定性分析

  通过李雅普诺夫方程证明,最终误差有界。
u a u x 2 = 1 ε ρ 2 e u _ { a u x 2 } = \frac { 1 } { \varepsilon} \rho ^ { 2 } e uaux2=ε1ρ2e  从李雅普诺夫方程入手,令
V = 1 2 e 2 V = \frac { 1 } { 2 } e ^ { 2 } V=21e2  则 v ˙ = e e ˙ = e ( x ˙ d − f ( x ) − k e − x ˙ d − 1 ε ρ 2 e ) = − e f ( x ) − k e 2 − 1 ε ρ 2 e 2 \begin{aligned} \dot{v}&=e\dot{e}=e\left( \dot{x}_d-f\left( x \right) -ke-\dot{x}_d-\frac{1}{\varepsilon}\rho ^2e \right)\\ &=-ef\left( x \right) -ke^2-\frac{1}{\varepsilon}\rho ^2e^2\\ \end{aligned} v˙=ee˙=e(x˙df(x)kex˙dε1ρ2e)=ef(x)ke2ε1ρ2e2  前面这一部分 − e f ( x ) ≤ ∣ e ∣ ∣ f ( x ) ∣ - e f ( x ) \leq | e | | f ( x ) | ef(x)e∣∣f(x),由于 ∣ f ( x ) ∣ < ρ ( x ) | f ( x ) | < \rho ( x ) f(x)<ρ(x),所以
− e f ( x ) ≤ ∣ e ∣ ∣ f ( x ) ∣ ≤ ∣ e ∣ ρ - e f ( x ) \leq | e | | f ( x ) |\le |e|\rho ef(x)e∣∣f(x)eρ  则
V ˙ ≤ ρ ∣ e ∣ − k e 2 − 1 ε ρ 2 ∣ e ∣ 2 = − k e 2 + ρ ∣ e ∣ ( 1 − 1 ε ρ ∣ e ∣ ) \dot V \leq \rho | e | - k e ^ { 2 } - \frac { 1 } { \varepsilon } \rho ^ { 2 } | e | ^ { 2 } = - k e ^ { 2 } + \rho | e | ( 1 - \frac { 1 } { \varepsilon } \rho | e | ) V˙ρeke2ε1ρ2e2=ke2+ρe(1ε1ρe)  有两种情况:

  第一种情况: ρ ∣ e ∣ > ε \rho |e | > \varepsilon ρe>ε,导致
1 ε ρ ∣ e ∣ > 1 ⇒ ∣ − 1 ε ρ ∣ e ∣ < 0 ⇒ ρ ∣ e ∣ ( 1 − 1 ε ρ ∣ e ∣ ) < 0 \frac { 1 } { \varepsilon } \rho | e | > 1 \Rightarrow | - \frac { 1 } { \varepsilon } \rho| e | < 0 \Rightarrow\rho | e | ( 1 - \frac { 1 } { \varepsilon } \rho | e | ) < 0 ε1ρe>1ε1ρe<0ρe(1ε1ρe)<0  则
V ˙ ≤ − k e 2 + 0 ⇒ V ˙ ≤ − k e 2 \dot { V } \leq - k e ^ { 2 } + 0 \Rightarrow \dot { V } \leq - k e ^ { 2 } V˙ke2+0V˙ke2

  在上一篇博客中讲解过如何把微分方程不等式化成等式再求解,大家可以去参考一下:

  【控制理论】深入理解鲁棒控制 | 滑模控制原理与应用实例解析

  第二种情况: ρ ∣ e ∣ < ε \rho |e | < \varepsilon ρe<ε,所以
1 ε ρ ∣ e ∣ ≤ 1 ⇒ 1 ≥ 1 − 1 ε ρ ∣ e ∣ ≥ 0 ⇒ ρ ∣ e ∣ ≥ ρ ∣ e ∣ ( 1 − 1 ε ρ ∣ e ∣ ) \frac { 1 } { \varepsilon } \rho | e | \leq 1 \Rightarrow 1 \geq 1 - \frac { 1 } { \varepsilon } \rho | e | \geq 0 \Rightarrow \rho | e | \geq \rho | e | ( 1 - \frac { 1 } { \varepsilon } \rho | e | ) ε1ρe111ε1ρe0ρeρe(1ε1ρe)  因为 ρ ∣ e ∣ < ε \rho |e | < \varepsilon ρe<ε,所以
ε ≥ ρ ∣ e ∣ ≥ ρ ∣ e ∣ ( 1 − 1 ε ρ ∣ e ∣ ) \varepsilon \ge \rho | e | \geq \rho | e | ( 1 - \frac { 1 } { \varepsilon } \rho | e | ) ερeρe(1ε1ρe)  则
V ˙ ≤ − k e 2 + ε \dot { V } \leq - k e ^ { 2 } + \varepsilon V˙ke2+ε  根据设定, V = 1 2 e 2 V = \frac { 1 } { 2 } e ^ { 2 } V=21e2 ,即 − k e 2 = − 2 k V - k e ^ { 2 } = - 2 k V ke2=2kV,可以写成
V ˙ ≤ − 2 k V + ε \dot V \leq - 2 k V + \varepsilon V˙2kV+ε  这是微分方程不等式,求解不等式需要引入 S ( t ) S(t) S(t),它是永远是正值的函数。下面的不等式就可以化成等式
V ˙ + 2 k V = ε − S ( t ) \dot { V } + 2 k V= \varepsilon - S ( t ) V˙+2kV=εS(t)  它是一阶常系数线性非齐次微分方程,它的解为
V ( t ) = V ( 0 ) exp ( − 2 k t ) − exp ( − 2 k t ) ∫ 0 t exp ( 2 k τ ) S ( τ ) d τ + ε exp ( − 2 k t ) ∫ 0 t exp ( 2 k τ ) d τ V { ( t ) } = V { ( 0 ) } \text{exp} ( - 2 k t ) - \text{exp} ( - 2 k t ) \int _ { 0 } ^ { t } \text{exp} ( 2 k \tau ) S ( \tau ) d \tau + \varepsilon \text{exp} ( - 2 k t ) \int _ { 0 } ^ { t } \text{exp} ( 2 k \tau ) d \tau V(t)=V(0)exp(2kt)exp(2kt)0texp(2kτ)S(τ)dτ+εexp(2kt)0texp(2kτ)dτ  中间项, exp ( 2 k τ ) > 0 \text{exp} ( 2 k \tau )>0 exp(2kτ)>0 S ( τ ) > 0 S(\tau)>0 S(τ)>0,所以 ∫ 0 t exp ( 2 k τ ) S ( τ ) d τ > 0 \int _ { 0 } ^ { t } \text{exp} ( 2 k \tau ) S ( \tau ) d \tau>0 0texp(2kτ)S(τ)dτ>0 。然后 exp ( − 2 k t ) > 0 \text{exp} ( - 2 k t )>0 exp(2kt)>0,所以整个这一项都大于 0 0 0

  最后一项:
ε exp ⁡ ( − 2 k t ) ∫ 0 t exp ⁡ ( 2 k τ ) d τ = ε exp ⁡ ( − 2 k t ) 1 2 k ∫ 0 t exp ⁡ ( 2 k τ ) d ( 2 k τ ) = ε exp ⁡ ( − 2 k t ) 1 2 k exp ⁡ ( 2 k τ ) ∣ 0 t = ε exp ⁡ ( − 2 k τ ) 1 2 k ( e x p ( 2 k t ) − 1 ) = ε 2 k ( 1 −    exp ⁡ ( − 2 k t ) ) \begin{aligned} &\varepsilon \exp \left( -2kt \right) \int_0^{\text{t}}{\exp \left( 2k\tau \right) d\tau}\\ =&\varepsilon \exp \left( -2kt \right) \frac{1}{2k}\int_0^{\text{t}}{\exp \left( 2k\tau \right) d\left( 2k\tau \right)}\\ =&\varepsilon \exp \left( -2kt \right) \frac{1}{2k}\exp \left( 2\text{k}\tau \right) |_{0}^{t}\\ =&\varepsilon \exp \left( -2k\tau \right) \frac{1}{2k}\left( exp\left( 2kt \right) -1 \right)\\ =&\frac{\varepsilon}{2k}\left( 1-\,\,\exp \left( -2kt \right) \right)\\ \end{aligned} ====εexp(2kt)0texp(2kτ)dτεexp(2kt)2k10texp(2kτ)d(2kτ)εexp(2kt)2k1exp(2kτ)0tεexp(2kτ)2k1(exp(2kt)1)2kε(1exp(2kt))  所以
V ( t ) ≤ V ( 0 ) exp ( − 2 k t ) − 0 + e 2 k ( 1 − exp ( − 2 k t ) ) V ( t ) \leq V { ( 0 ) } \text{exp} ( - 2 k t ) - 0 + \frac { e } { 2 k } ( 1 - \text{exp} ( - 2 k t ) ) V(t)V(0)exp(2kt)0+2ke(1exp(2kt))  带入 1 2 e 2 \frac { 1 } { 2 } e ^ { 2 } 21e2
1 2 e 2 ( t ) = ≤ 1 2 e 2 ( 0 ) exp ( − 2 k t ) − 0 + e 2 k ( 1 − exp ( − 2 k t ) ) \frac { 1 } { 2 } e ^ { 2 }(t)= \leq \frac { 1 } { 2 } e ^ { 2 }(0) \text{exp} ( - 2 k t ) - 0 + \frac { e } { 2 k } ( 1 - \text{exp} ( - 2 k t ) ) 21e2(t)=≤21e2(0)exp(2kt)0+2ke(1exp(2kt))  左右开根号得到
∣ e ( t ) ∣ ≤ ∣ e ( 0 ) ∣ exp ⁡ ( − 2 k t ) + ε k − ε k exp ⁡ ( 2 k t ) |e\left( {t} \right) |\leq \sqrt{|e(0)|\exp \left( -2kt \right) +\frac{\varepsilon}{k}-\frac{\varepsilon}{k}\exp \left( 2kt \right)} e(t)e(0)exp(2kt)+kεkεexp(2kt)   随着时间 t → ∞ t\rightarrow \infty t,最终结果
∣ e ( t ) ∣ ≤ ε k | e ( t ) | \leq \sqrt { \frac { \varepsilon } { k } } e(t)kε   它不是趋近于 0 0 0 的结果,但在最后误差会小于某个值。这种情况叫做 全局一致最终有界(globally uniformly ultimately bounded)

  随着 ε \varepsilon ε 的减小,当 ε \varepsilon ε 非常小时,可以考虑 e → 0 e\rightarrow0 e0。而在这种情况下, u a u x 2 = 1 ε ρ 2 e u _ { a u x _ { 2 } } = \frac { 1 } { \varepsilon} \rho ^ { 2 } e uaux2=ε1ρ2e   就会变得非常大,所以要做权衡,多大的误差是可以接受的,同时不能让执行器有太大的负担。


四、高频率鲁棒控制器

4.1 设计理念

  在滑模控制的基础上,使切换变得平缓

4.2 控制器形式

U a u x 3 = ρ 2 e ρ ∣ e ∣ + ε U _ { a u x 3 } = \frac { \rho ^ { 2 } e } { \rho | e | + \varepsilon } Uaux3=ρe+ερ2e  当 ε = 0 \varepsilon=0 ε=0
ρ 2 e ρ ∣ e ∣ = ρ e ∣ e ∣ \frac { \rho ^ { 2 } e } { \rho | e | } = \rho \frac { e } { | e | } ρeρ2e=ρee  就是滑模控制。

  而当 ε ≠ 0 \varepsilon\ne0 ε=0 时,可得
ρ 2 e ρ ∣ e ∣ + ε < 1 \frac { \rho ^ { 2 } e } { \rho | e | +\varepsilon} < 1 ρe+ερ2e<1  在图像上画出来是这样的形式:

在这里插入图片描述
  上面的两条蓝线是 1 1 1 − 1 -1 1,两条红线就是 ρ 2 e ρ ∣ e ∣ + ε \frac { \rho ^ { 2 } e } { \rho | e | +\varepsilon} ρe+ερ2e,在里面之内的。和滑模控制相比,相当于把蓝线变到了红线的位置,即切换变得平缓一些。

4.3 稳定性分析

   u a u x 3 u _ { a u x _ { 3 } } uaux3 的稳定性的证明和 u a u x 2 u _ { a u x _ { 2 } } uaux2 的证明差不多。
u a u x 3 = ρ 2 e ρ ∣ e ∣ + ε u _ { aux3 } = \frac { \rho ^ { 2 } e } { \rho | e | + \varepsilon } uaux3=ρe+ερ2e V = 1 2 e 2 V ˙ = e e ˙ ≤ − k e 2 + ρ ∣ e ∣ − e ρ 2 e ρ ∣ e ∣ + ε = − k e 2 + ρ 2 ∣ e ∣ 2 + ρ ∣ e ∣ ε − ρ 2 e 2 ρ ∣ e ∣ + ε V = \frac { 1 } { 2 } e ^ { 2 } \\ \dot { V } = e \dot { e } \leq - k e ^ { 2 } + \rho | e | - e \frac { \rho ^ { 2 } e } { \rho | e | + \varepsilon } = - k e ^ { 2 } + \frac { \rho ^ { 2 } | e| ^ { 2 } + \rho|e| \varepsilon - \rho^ { 2 } e ^ { 2 } } { \rho | e | + \varepsilon } V=21e2V˙=ee˙ke2+ρeeρe+ερ2e=ke2+ρe+ερ2e2+ρeερ2e2 V ˙ ≤ − k e 2 + ε ( ρ ∣ e ∣ ρ ∣ e ∣ + ε ) \dot { V } \leq - k e ^ { 2 } + \varepsilon ( \frac { \rho | e | } { \rho | e | +\varepsilon } ) V˙ke2+ε(ρe+ερe)  其中 0 ≤ ρ ∣ e ∣ ρ ∣ e ∣ + ε ≤ 1 0 \leq \frac { \rho | e | } { \rho | e | + \varepsilon } \leq 1 0ρe+ερe1 V ˙ ≤ − k e 2 + ε \dot { V } \leq - k e ^ { 2 } + \varepsilon V˙ke2+ε  与 u a u x 3 u _ { aux3 } uaux3 结果相似
∣ e ∣ < ε k | e | < \sqrt { \frac { \varepsilon } { k} } e<kε   最后的结果也一样,也是最后会限制在 ε k \sqrt { \frac { \varepsilon } { k} } kε 区域内。


五、总结

  通过上面的推导,说明了一个道理,就是当有系统
x ˙ = f ( x ) + u \dot { x } = f ( x ) + u x˙=f(x)+u  如果目标是令 x → x d x\rightarrow x_d xxd ,即令 e = x d − x → 0 e = x d - x \rightarrow 0 e=xdx0,同时系统又满足 ∣ f ( x ) ∣ < ρ ( x ) | f ( x ) | < \rho ( x ) f(x)<ρ(x),这时可以设计不同的鲁棒控制器,使系统抵消不确定因素。

  可以令
u = x ˙ d − k e + u a u x u = \dot x_d - k e + u_{ a u x} u=x˙dke+uaux   其中,
在这里插入图片描述

   u a u x = ρ e ∣ e ∣ u_{aux}=\rho \frac{e}{|e|} uaux=ρee 为滑模控制

   u a u x = 1 ε ρ 2 e u_{aux}=\frac{1}{\varepsilon}\rho ^2e uaux=ε1ρ2e 为高增益鲁棒控制

   u a u x = ρ 2 e ρ ∣ e ∣ + ε u_{aux}=\frac{\rho ^2e}{\rho |e|+\varepsilon} uaux=ρe+ερ2e 为高频鲁棒控制


参考资料

  【Advanced控制理论】18_Robust Control (2)_鲁棒控制_High Gain_High Frequency


后记:

🌟 感谢您耐心阅读这篇关于 高增益与高频率鲁棒控制器的设计与分析 的技术博客。 📚

🎯 如果您觉得这篇博客对您有所帮助,请不要吝啬您的点赞和评论 📢

🌟您的支持是我继续创作的动力。同时,别忘了收藏本篇博客,以便日后随时查阅。🚀

🚗 让我们一起期待更多的技术分享,共同探索移动机器人的无限可能!💡

🎭感谢您的支持与关注,让我们一起在知识的海洋中砥砺前行 🚀

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清流君

感恩有您,共创未来,愿美好常伴

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值