最新综述:物理信息神经网络及其在复杂流体动力学中的应用进展 2024.10.2

原文:A comprehensive review of advances in physics-informed neural networks and their applications in complex fluid dynamics

摘要

物理信息神经网络(PINNs)代表了一种新兴的计算范式,它结合了给定问题域中的观测数据模式和基本物理定律。该方法在解决复杂流体动力学领域中的多种难题方面具有显著优势。我们深入探讨了PINNs的模型架构设计、收敛率优化以及计算模块的开发。然而,高效、准确地使用PINNs来解决复杂的流体动力学问题仍是一个巨大的障碍。例如,从已知数据快速推导湍流的替代模型并准确表征多相流场中的流动细节,仍然具有极大的挑战性。此外,在多物理耦合模型中预测参数,实现在多尺度建模中平衡所有尺度,以及开发涵盖复杂流体动力学问题的标准化测试集,都是亟需的技术突破。本论文讨论了PINNs的最新进展及其在复杂流体动力学中的潜在应用,包括湍流、多相流、多场耦合流和多尺度流。我们还分析了PINNs在解决这些流体动力学问题中面临的挑战,并概述了其未来发展趋势。我们的目标是增强深度学习与复杂流体动力学的融合,推动更现实和复杂流动问题的解决。

1引言

近年来,基于人工神经网络的深度学习(DL)技术在解决物理和化学等领域的工程问题中变得越来越受欢迎。通过构建多层神经网络模型,DL可以从数据中学习并提取复杂特征,从而有效地促进模式识别和不同领域的预测。在解决偏微分方程(PDEs)方面,DL已经发展到不再依赖离散网格或手动推导解析解,直接从数据中学习PDE解,提供了有效的真实世界场景的近似。
然而,DL方法的学习过程受到训练数据集范围的限制,例如指定的初始和边界条件、材料特性以及其他参数。这一限制降低了DL推广至未知条件的能力,显著减少了DL技术在预测未知领域时的有效性。此外,存在一种基于DL的神经算子技术(例如,深度算子网络[DeepONet]和傅里叶神经算子[FNO]),它们利用编码和近似的概念来学习不同函数空间之间的非线性映射。这些方法能够解决多种初始和边界条件下的PDEs问题。
虽然神经算子展示了强大的实时推理能力,但在应用于大规模领域和多物理问题时,它们及其变体仍面临挑战。更严重的问题在于,这些系统严重依赖于数据,因此当数据获取稀少或稀缺时,容易导致过拟合。此外,这些被称为“黑箱”模型的方法,可能无法捕获PDE解的数学性质,并缺乏有效集成特定领域物理知识的能力。幸运的是,Raissi提出了物理信息神经网络(PINNs),这种范式丰富了DL在数学物理中的应用。
PINNs通过在神经网络架构中集成物理约束和先验知识,结合有限的数据,实现了鲁棒的泛化能力和出色的可解释性。PINNs通过利用控制方程、初始条件和边界条件的残差来创建损失函数。损失函数随后被优化以发现PDEs的解,同时遵守物理定律所施加的约束。为了增强损失函数,主要策略包括将数学模型融入网络,并利用来自控制方程的残差项。残差项作为惩罚项,限制了解的空间,使其符合物理上可行的解空间。
自其问世以来,PINNs在科学计算社区中获得了显著的认可。凭借这些优势,PINNsi已广泛应用于各个领域,包括流体力学、固体力学、生物医学科学、材料科学和光学电磁应用。
另一方面,作为最重要的学科之一,流体力学经历了从经典流体力学、实验流体力学和计算流体动力学(CFD)(18-20)的显著进步,到基于人工智能的现代流体动力学的开发。科学家们已经在流体力学的各个领域取得了大量研究成果。取得的成就表明,我们可以将流体力学研究划分为三类:实验研究、理论分析和数值模拟。实验研究是最可靠且值得信赖的研究方法,因为它们能够直接观察和测量流体现象。然而,当处理复杂问题时,其与实际现象的吻合度可能会受到实验设计、仪器限制和不可控环境因素的制约。理论分析和数值模拟涉及构建基于守恒方程(如质量、运动和状态)的物理模型。这些模型依赖于有限的基本数据,例如初始和边界条件。理论解利用了诸如变量分离(21)和拉普拉斯变换等解析技术。另一方面,数值解采用有限体积(FVM)(22)、有限差分(FDM)(23)和有限元(FEM)(A23)等方法来解决物理模型。这些方法最终得出了关键的流体参数,例如流速、速度和压力(24,25). 然而,理论研究和数值模拟存在固有的局限性,这些局限性无法完全覆盖真实世界中的过程。例如,数值模拟中使用的条件往往是理想化的,无法充分考虑真实世界的复杂系统建模。这在涉及多物理场或多尺度流体动力学问题时尤为困难,特别是那些涉及相变或化学反应且具有多种边界条件的过程。这是因为问题的复杂性在于维度的数量。尽管如此,解决这些问题的计算方法仍需大量时间。
PINN在工程应用中取得了显著关注,尤其是在解决流体力学领域的偏微分方程(PDEs)问题方面。其优点是能够有效利用来自真实世界现象的先验知识,并能灵活处理实验数据或数值模拟输出。当存在先验知识和初始/边界条件时,PINNs可以作为一种正向建模方法,类似于数值模拟方法。当条件不足时,如先验知识不足,PINNs可以通过利用标记数据同时处理参数反演问题(26)PINN方法的另一个优势在于它没有严格的数据要求,因为这一点取决于具体问题(27)。物理模型的复杂性、神经网络的架构以及可用数据集的总量共同决定了有效解决问题所需的数据量。此外,PNNs在处理复杂流动问题时表现出出色的适应性,这些问题以稀疏训练数据、噪声数据或非线性或时间变化的边界条件为特征。这通过其动态修改激活函数、网络结构以及实时优化器的能力来实现,基于当前情况的需要({27)。因此,PINNs具备将数据与物理知识相结合的能力,并在解决这些挑战中表现出显著优势。尽管使用PINNs解决流体力学问题已经取得了显著的成功,特别是在高效处理相对简单的PDEs和特定物理任务方面,但在处理更复杂的流体动力学问题时仍然遇到了重大障碍。这些挑战包括对基本原理的有限理解、实验数据稀缺以及创建准确模型的困难。此外,即使涉及湍流、多相流、多场耦合和多尺度建模的复杂流体现象,训练的稳健性和效率仍有改进的潜力。为解决这些困难,本研究首先提供了对PINNs最近进展的概述,包括模型结构设计、收敛率优化以及计算模块开发。然后讨论了在复杂流中PINNs在不同流体性质上的应用,特别是在湍流、多相流、多尺度建模等方面。最后,我们通过提供针对这些交互流的代表性场景的研究,总结了PINNs在这些复杂问题中的应用潜力,展望了未来的研究方向。

PINN的最新进展

在本节中,我们从全面的角度提供了PINNs的原始架构和工作原理。此外,我们将分析近年来研究人员对原始框架进行的各种修改。这些修改包括设计模型架构、优化收敛速度以及开发库。然而,在分析这些方面之前,有必要提供自PINNs诞生以来,在各种领域和研究机构中的论文发表、引用数量和应用情况的综合信息。这些数据将突出PINNs在DL领域的显著贡献。如图1所示,PINNs领域的论文数量增长迅速,到2023年已经达到了1426篇。这些论文共获得了20355次引用,展示了PINNs在各个学科中的广泛应用,突出了其强大的能力和适应结构,彻底改变了问题解决方法。图2提供了最具影响力的科学家名单,他们在PNNs领域做出了重要贡献。研究人员可以通过阅读这些学者发表的文章,获得有价值的知识,并促进多学科合作。本文的结构和当前文章的内容框架如图3所示。

可参考该链接内容
http://www.360doc.com/content/24/1101/08/32196507_1138182873.shtml

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值