防止日后忘记,记录一下机器人学的学习过程~
一、概念解释
① D-H 参数:
D-H参数包含α(连杆扭转角)、a(连杆长度)、d(连杆偏距)以及θ(关节角)这四个运动学参数,其中前两个参数用来描述连杆本身,后两个参数用来描述连杆之间的连接关系,这种用连杆参数描述机构运动关系的规则称为Denavit-Hartenberg方法,相应的参数称为D-H参数。
连杆坐标系的建立:
①确定Z轴:Z轴为旋转关节的旋转中心或者是移动关节的移动方向
②确定X轴:与连杆的公法线ai-1重合,方向由连杆i-1指向连杆i
③确定y轴:右手定则,上图的y轴方向反了
再来说说DH参数的具体数值
αi-1:从i-1转到i的角度,有正负,从xi-1的逆方向看过去,若转动是逆时针,则为正值(绕Xi-1轴的转角)
ai-1:只为正值,公法线的长度
di:从Zi的正方向看上去,若Oi在Oi-1上面则为正
θi:Xi-1转到Xi的角度,从Zi的逆方向看过去,若为逆时针就为正值(绕Zi轴的转角)
② 齐次变换矩阵T:
是一个4*4矩阵形式的算子,表示了从一个坐标系到另一个坐标系的映射,涵盖了一般坐标变换中的平移和旋转。
③ 工作空间:机器人的末端执行器的能达到的所有位置的集合。
④ 可达空间:机器人的末端执行器至少能从一个方向(一种姿态)达到的所有位置的集合,即末端执行器可以以至少一种方式(比如先旋转后平移)达到可达空间的一个点位。
⑤ 灵巧工作空间:机器人的末端执行器能从各个方向(任意姿态)达到的所有位置的集合,即末端执行器可以以任何方式(先平移后旋转,先旋转后平移等等)到达灵巧空间的每一个点位。
⑥ 运动学:
正运动学:已知机器人各关节变量的取值,确定末端执行器的位置和姿态。
逆运动学:已知工具坐标系相对于固定坐标系的期望位置和姿态,求解各个关节角度。
⑦ 雅克比矩阵:
雅克比矩阵实质上是一种时变的线性变换,机器人的雅克比矩阵描述了机器人各关节速度(关节空间下)与机器人末端速度(笛卡尔空间下)之间的线性映射关系。
⑧ 重复精度:关节空间中回到示教点,末端执行器在笛卡尔空间的精度。
⑨ 定位精度:在笛卡尔空间内达到“计算点”的精度。
⑩路径规划(motion planning):不考虑临时或者移动障碍物的前提下进行的规划。
⑪轨迹规划(trajectories planning):考虑实际临时或者移动障碍物,考虑速度,动力学约束的情况下,尽量按照规划路径进行轨迹规划。如果没有障碍物,A,B两点间的运动规划和轨迹规划是一个概念⑬⑬
⑫运动学与动力学区别:机器人的运动学研究操作臂的运动特性,不考虑使操作臂产生运动时施加的力。运动学考虑了引起机器人产生运动时施加的力。
⑬点到点轨迹规划和直线轨迹规划的区别:
点到点轨迹规划:已知机器人运动的起始终止条件,在运动过程中的速度、加速度、位移都是时间的函数,给定速度参数的关于时间的解析式的轨迹规划方式。
直线轨迹规划:已知机器人运动的始末两点在空间中的位置,两点间的轨迹通过直线插值拟合而不是具体给出每个运动参数关于时间的解析式。
二、空间变换与描述
机器人学的核心是用矩阵进行不同坐标系坐标值的变化,一般研究的是末端执行器(t)坐标转化为基坐标(b)的过程。
前置知识点:
1)向量的内积(点乘):·表示向量b在向量a上的投影的长度
2)坐标系{A}的基矢(单位矢量,坐标系的三个正交单位向量)用向量X、Y、Z表示
他们之间满足相互正交、模长为1的条件
2.1旋转矩阵
旋转矩阵R的表示如:
其中R的下标B,上标A表示该旋转矩阵是坐标系{B}相对于{A}的表达,右边的列向量的角标同理,之所以不与R的标注一致是因为教材的习惯
将旋转矩阵写出具体的向量点积的形式,其中矩阵中的所有向量是对应坐标系的基矢
可以看出三组列向量依次表示:
第一列:坐标系{A}的基矢X、Y、Z在坐标系{B}的X轴方向的投影长度
第二列:坐标系{A}的基矢X、Y、Z在坐标系{B}的Y轴方向的投影长度
第三列:坐标系{A}的基矢X、Y、Z在坐标系{B}的Z轴方向的投影长度
旋转矩阵为正交阵的证明:
其性质:
由于是正交阵,,可以易得旋转阵各列向量相互正交且行列式为0.
旋转矩阵是特殊的正交阵,具有正交阵的所有性质,同时旋转阵还要满足它的各列向量形成Rn的一个正交基。