pcl 点云分割

点云分割point cloud segmentation

根据空间,几何和纹理等特征点进行划分,是同一划分内的点云拥有相似的特征。点云分割的目的是分块,从而便于单独处理。将一些平面、曲面等等进行分割。

点云分类point cloud classification

为每个点分配一个语义标记。点云的分类是将点云分类到不同的点云集,同一个点云集具有相似或相同的属性,例如地面,树木,人等。 也叫做点云语义分割。

watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA6ZW_5rKZ5pyJ6IKl6bG8,size_20,color_FFFFFF,t_70,g_se,x_16

点云分割只是物体识别与分类的其中一个步骤,原始点云可以通过经典的分割方法来进行分割,也可以通过近些年比较热门的深度学习来进行分割,但是分割的目的最终就是为了进行物体识别和分类。总而言之,分割只是属于其中一部分工作,并不是点云处理的最终结果。

特征提取:单个点或一组点可以根据低级属性检测某种类型的点。“级属性”是指没有语义(例如,位置,高程,几何形状,颜色,强度,点密度等)的信息。“低级属性 ”信息通常可以从点云数据中获取而无需事先的高级知识。例如,平面提取和边缘检测、以及特征描述子的计算都可以视为特征提取过程。

分割:基于上述低级属性(例如,位置,高程,几何形状,颜色,强度,点密度等)将点分组为一个部分或一个对象的过程。与单独对每个点处理或分析相比,分割过程对每个对象的进一步处理和分析,使其具有更丰富的信息。

物体识别:识别点云中一种或多种类型对象的过程。该过程通常通过根据特征提取和分割的结果执行分析,并基于先验知识在给定的约束和规则下进行。

分类:类似于对象识别的过程,该过程为每个点,线段或对象分配一个类别或标识,以表示某些类型的对象(例如,标志,道路,标记或建筑物)。对象识别和点云分类之间的区别在于,对象识别是利用一种方法以将一些特定对象与其他对象区分开,而分类的目的通尝是在语义上标记整个场景。

点云的有效分割是许多应用的前提:

工业测量/逆向工程:对零件表面提前进行分割,再进行后续重建、计算特征等操作。比如利用三维扫描仪进行重建,在文物重建、机械零件上应用比较广泛。

遥感领域:对地物进行提前分割,再进行分类识别等工作。一般使用激光雷达获取点云。

经典点云分割方法:

• 随机采样一致方法(RANSAC)

• 欧式聚类分割方法

• 条件欧式聚类分割

• 基于区域生长的分割

• 基于颜色的区域生长分割

• 最小图割的分割

• 基于法线微分的分割

• 基于超体素的分割

随机采样一致方法(RANSAC)

采用迭代的方式从一组包含离群的被观测数据中估算出数学模型的参数。RANSAC算法假设数据中包含正确数据和异常数据(或称为噪声)。正确数据记为内点(inliers),异常数据记为外点(outliers)。同时RANSAC也假设,给定一组正确的数据,存在可以计算出符合这些数据的模型参数的方法。该算法核心思想就是随机性和假设性,随机性是根据正确数据出现概率去随机选取抽样数据,根据大数定律,随机性模拟可以近似得到正确结果。假设性是假设选取出的抽样数据都是正确数据,然后用这些正确数据通过问题满足的模型,去计算其他点,然后对这次结果进行一个评分。

算法流程:

1. 要得到一个直线模型,需要两个点唯一确定一个直线方程。所以第一步随机选择两个点。

2. 通过这两个点,可以计算出这两个点所表示的模型方程y=ax+b。

3. 将所有的数据点套到这个模型中计算误差。

4. 找到所有满足误差阈值的点。

5. 然后我们再重复1~4这个过程,直到达到一定迭代次数后,选出那个被支持的最多的模型,作为问题的解。

watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA6ZW_5rKZ5pyJ6IKl6bG8,size_16,color_FFFFFF,t_70,g_se,x_16

RANSAC与最小二乘区别:

最小二乘法尽量去适应包括局外点在内的所有点。相反,RANSAC能得出一个仅仅用局内点计算出模型,并且概率还足够高。但是,RANSAC并不能保证结果一定正确,为了保证算法有足够高的合理概率,必须小心的选择算法的参数(参数配置)。经实验验证,对于包含80%误差的数据集,RANSAC的效果远优于直接的最小二乘法。

最重要的参数就是迭代的次数 k

1.假设任取一个点是内群点的概率为w,则有w = 数据中内群点的数量/数据中点的总数;

2.则任取n个点都是内群点的概率为20211009161912311.png;   

3. 所以我们所选择的 n 个点至少有一个不是内群点的概率为 20211009161836932.png

4. 所以我们连续重复 k 次都不能有一次全是内群点的概率𝑝𝑒为20211009162034702.png ;

5. 由上,我们发现当 w 保持不变时,我们要想让20211009162147433.png尽量小,则 n 越大,k 就需要越大。

• 以下列表描述了实现的稳健样本共识估计器:

 

• SAC_RANSAC - 随机样本共识

• SAC_LMEDS - 最小平方中位数

• SAC_MSAC - M-Estimator Sample Consensus

• SAC_RRANSAC - 随机RANSAC

• SAC_RMSAC - 随机MSAC

• SAC_MLESAC - 最大似然估计样本共识

• SAC_PROSAC - 渐进式样本共识

 

 

 

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
PCL(Point Cloud Library)是一个开源的点云处理库用于处理和分析三维点云数据。在点云分割任务中,评价指标用于衡量算法的性能和准确度。以下是几个常用的PCL点云分割评价指标: 1. 点云分割准确率(Segmentation Accuracy):该指标用于评估算法对点云数据进行正确分割的能力。准确率可以通过计算正确分割的点数与总点数之比来得到。 2. 点云分割召回率(Segmentation Recall):该指标用于评估算法对点云数据进行完整分割的能力。召回率可以通过计算正确分割的点数与真实分割点数之比来得到。 3. 平均欠分割误差(Under-segmentation Error):该指标用于评估算法对点云数据进行过度分割的程度。欠分割误差可以通过计算未正确分割的点数与总点数之比来得到。 4. 平均过分割误差(Over-segmentation Error):该指标用于评估算法对点云数据进行不足分割的程度。过分割误差可以通过计算错误分割的点数与总点数之比来得到。 5. 边界正确率(Boundary Precision):该指标用于评估算法对点云数据中物体边界的准确度。边界正确率可以通过计算正确分割的边界点数与总边界点数之比来得到。 6. 边界召回率(Boundary Recall):该指标用于评估算法对点云数据中物体边界的完整性。边界召回率可以通过计算正确分割的边界点数与真实边界点数之比来得到。 以上是一些常见的PCL点云分割评价指标,可以根据具体任务和需求选择适合的指标进行评估。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长沙有肥鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值