PCL 使用LCCP算法进行点云分割【2025最新版】

本文介绍了PCL库中基于LCCP(Locally Convex Connected Patches)算法进行点云分割的方法。首先概述了算法原理,包括超体聚类和基于凹凸关系的点云再聚类。接着,详细解释了Extended Convexity Criterion(CC)和Sanity criterion(SC)两种判据,用于确定点云的凹凸性。在标记了凹凸关系后,通过区域增长算法聚类成物体。最后,提供了代码实现、结果展示及相关链接及测试数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

博客长期更新,本文最近更新时间为:2025年1月1日。

一、算法原理

1、概述

  LCCP是Locally Convex Connected Patches的缩写,算法大致可以分成两个部分:

  1. 基于超体聚类的过分割。
  2. 在超体聚类的基础上再聚类。

关于超体聚类相关内容见:PCL 基于超体素的点云分割

  点云完成超体聚类之后,对于过分割的点云需要计算不同的块之间凹凸关系。凹凸关系通过**CC(Extended Convexity Criterion)**和 SC(Sanity criterion)判据来进行判断。其中CC利用相邻两片中心连线向量与法向量夹角来判断两片是凹是凸。

LCCP (Least Common Contour Plane) 点云分割是一种基于三维几何特征的点云处理技术,它通过找到最小共面平面来分离不同物体。在MATLAB中编写这样的程序需要一些基础的计算机视觉和数值优化知识。以下是一个简单的步骤和伪代码概述: ```matlab % 加载点云数据 pc = loadPCDFile('your_point_cloud.pcd'); % 定义辅助函数计算点到平面的距离 distanceToPlane = @(planeNormal, planeDistance, point) dot(planeNormal, point) - planeDistance; % 初始化变量 minDistance = Inf; % 最小距离初始化为无穷大 bestNormal = zeros(3,1); % 平面法向量 % 遍历所有可能的平面组合(这里假设每个维度) for i = 1:size(pc,2) for j = 1:i-1 % 计算当前平面(x、y或z轴的方向) planeNormal = [1;0;0]; % 这里假设我们从第一个维度开始 if i ~= 1 && j ~= 1 planeNormal = [0;1;0]; end % 将所有点转换到新坐标系并计算距离 transformedPoints = pc(:,[1:j,i]) - dot(pc(:,i), planeNormal)*planeNormal; distances = distanceToPlane(planeNormal, mean(transformedPoints(:,i)), transformedPoints); % 更新最佳平面 currentMeanDistance = mean(distances); if currentMeanDistance < minDistance minDistance = currentMeanDistance; bestNormal = planeNormal; end end end % 创建分割平面 splitPlane = [bestNormal'; -minDistance]; % 应用分割,比如只保留距离大于等于零的部分 segmentedCloud = pc(distanceToPlane(splitPlane, pc, :) >= 0, :); % 可视化结果 scatter3(segmentedCloud(:,1), segmentedCloud(:,2), segmentedCloud(:,3)); xlabel('X'); ylabel('Y'); zlabel('Z'); %
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值