1、叠加定理
-
功率不能用叠加定理
拆解的太碎,电路碎片过多,此时每个碎片小容易求,但是要求的碎片数量比较多。碎片大点,每个碎片求解难度增加,但是要求的碎片数量减少。
下边是一种巧妙的情况,形成了两个单回路。
受控源与电阻地位相同,不参与单独的响应,而是控制量分量。因为很多时候控制量会因为独立电源置零,而发生变化。
2、齐性原理
1、替代定理
图示表示:
叠加定理和齐性定理只能用于线性电路,但是替代定理无论线不线性都可以用。
常见的:线性电路将某复杂支路等效成电压源或电流源之后,就可以使用叠加原理了。
引入两个相互抵消的电压源,拿其中一个去抵消支路电压。
对偶的思想:引入两个相互抵消的电流源,拿其中一个去抵消支路流。
回路当中只有电压源,就会导致电流不确定。
对偶:对结点连的都是电流源,那么该节点的电压就无法确定了。
2、替代定理的应用
配合和电流源串联的电压源可以去掉
实际电路设计,先根据功能模块设计电路,再用电路定理化简重构电路
电桥不平衡
3、戴维宁定理和诺顿定理
对于线性含由独立源的电路,可以等效的最简的结构,可以是电阻+电压源,两者是串联。也可以是电阻+电流源,两者并联。
4、用戴维宁定理和诺顿定理等效含源电路的前的思考(线性含源)
1)两种等效形式是等效的。
2)公式法——u=f(i)或i=f(u)
根据方程公式猜实际电路的等效结构
1、戴维南定理
2、戴维南定理的证明
对于线性含源的一个结构,
右边接一个支路N,再用电流源替代N
情况一:A没有独立源,那么A可以等价于一个电阻
情况二:A有独立源,例证法:
使用叠加法,进行非彻底拆分,
假设A中的独立电源由两个分别是m,n,
就可以先把电流源i去掉成开路,计算a,b间电压,得到电压分量u1,u1在此解不出。
再把独立源m,n去掉,计算a,b间电压,得到电压分量u2,同时可以知道去掉独立电源的N的等效电阻为Req。
最终由公式法得到:
3、定理的应用
4、例题
对戴维南定理的认识:把电路当中拿出来,把剩余的东西进行戴维南化简。
1、诺顿定理的证明
诺顿定理的证明,
回忆戴维南定理的证明是,在a,b两端加上一个电流源,再根据叠加定理,就解电压Uab。
对偶原理:
在a,b两端加上一个电压源u,再根据叠加定理求A中的独立源作用是给到a,b的电流Iab’,再求在a,b两端加上一个电压源u作用时的电流Iab",就解电流Iab=Iab’+Iab"。
Iab=Iab’+Iab"等价于公式法:Iab=Iab’-Geq*u(Geq是电导)
2、含源线性电路四种求解等效电阻(输入电阻)的方法
1)A中没有受控源,只有非受控源和电阻,串并联,串并混联,Y型,三角型求解
2)A中有受控源,和非受控源,电阻,可以用外加电源法,即假设外加电压,假设外加电流,即不加具体大小的电源,加一个大小位置的电源,当然也可以实际加明确大小的电源;可以假设ab间的电流(注意是从正极a流入A的电流),电压Uab,通过将电流源变成导线,电压源看出开路,再求比值得到的电阻就是输入电阻。
3)开短路法:
4)实验法:
加一个已知的电阻RL,体会对偶关系。
3、诺顿定理的使用——求短路电流输入电阻
分流公式:两个电阻R1、R2串联于电压为V的电路中,则:电流I=V/(R1+R2)
即等效电阻无穷大,就是开路,为零就是短路。
4、最大功率传输定理
独立源置零
输入电阻不是电源内阻,效率是内阻上浪费的能量越多效率越低。
端口A的功率=输入电阻上消耗的功率+独立源上消耗的功率