【考研数学一·线性代数(2)】矩阵

1.矩阵的定义

m × n m\times n m×n个数 a i j ( i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯   , n ) a_{ij}(i=1,2,\cdots,m;j=1,2,\cdots,n) aij(i=1,2,,m;j=1,2,,n)排成的 m m m n n n列的矩形表格,当 m = n m=n m=n时,称为 n n n阶方阵( n n n阶矩阵).
[ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ] \left[ \begin{matrix} a_{11}&a_{12}&\cdots&a_{1n} \\a_{21}&a_{22}&\cdots&a_{2n} \\\vdots&\vdots&&\vdots \\a_{n1}&a_{n2}&\cdots&a_{nn} \end{matrix} \right] a11a21an1a12a22an2a1na2nann

2.矩阵的基本运算

  1. 相等——同型且对应元素相等

  2. 加法

    C = A + B = ( a i j ) m × n + ( b i j ) m × n = ( c i j ) m × n , c i j = a i j + b i j C=A+B=(a_{ij})_{m\times n}+(b_{ij})_{m\times n}=(c_{ij})_{m\times n},c_{ij}=a_{ij}+b_{ij} C=A+B=(aij)m×n+(bij)m×n=(cij)m×n,cij=aij+bij

  3. 数乘矩阵

    k A = A k = k [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ] = [ k a 11 k a 12 ⋯ k a 1 n k a 21 k a 22 ⋯ k a 2 n ⋮ ⋮ ⋮ k a n 1 k a n 2 ⋯ k a n n ] kA=Ak=k \left[ \begin{matrix} a_{11}&a_{12}&\cdots&a_{1n} \\a_{21}&a_{22}&\cdots&a_{2n} \\\vdots&\vdots&&\vdots \\a_{n1}&a_{n2}&\cdots&a_{nn} \end{matrix} \right]= \left[ \begin{matrix} ka_{11}&ka_{12}&\cdots&ka_{1n} \\ka_{21}&ka_{22}&\cdots&ka_{2n} \\\vdots&\vdots&&\vdots \\ka_{n1}&ka_{n2}&\cdots&ka_{nn} \end{matrix} \right] kA=Ak=k a11a21an1a12a22an2a1na2nann = ka11ka21kan1ka12ka22kan2ka1nka2nkann

  4. 矩阵乘法

    A A A m × s m\times s m×s矩阵, B B B s × n s\times n s×n矩阵( A A A的列数和 B B B的行数相等)

    C = A B = ( c i j ) m × n c i j = ∑ k = 1 s a i k b k j = a i 1 b 1 j + a i 2 b 2 j + ⋯ + a i s b s j C=AB=(c_{ij})_{m\times n} \\c_{ij}=\sum\limits_{k=1}^sa_{ik}b{kj}=a_{i1}b{1j}+a{i2}b{2j}+\cdots+a_{is}b_{sj} C=AB=(cij)m×ncij=k=1saikbkj=ai1b1j+ai2b2j++aisbsj

  5. 转置矩阵

    A T = [ a 11 a 21 ⋯ a n 1 a 12 a 22 ⋯ a n 2 ⋮ ⋮ ⋮ a 1 n a 2 n ⋯ a n n ] A^T=\left[ \begin{matrix} a_{11}&a_{21}&\cdots&a_{n1} \\a_{12}&a_{22}&\cdots&a_{n2} \\\vdots&\vdots&&\vdots \\a_{1n}&a_{2n}&\cdots&a_{nn} \end{matrix} \right] AT= a11a12a1na21a22a2nan1an2ann

  6. 向量的内积与正交

    α = [ a 1 , a 2 , ⋯   , a n ] T , β = [ b 1 , b 2 , ⋯   , b n ] T \alpha=[a_1,a_2,\cdots,a_n]^T,\beta=[b_1,b_2,\cdots,b_n]^T α=[a1,a2,,an]T,β=[b1,b2,,bn]T

    • 内积—— α T β = ∑ i = 1 n a i b i , \alpha^T\beta=\sum\limits_{i=1}^na_ib_i, αTβ=i=1naibi,记作 ( α , β ) , ( α , β ) = α T β = ∥ α ∥ ∥ β ∥ cos ⁡ θ (\alpha,\beta),(\alpha,\beta)=\alpha^T\beta=\Vert\alpha\Vert\Vert\beta\Vert\cos\theta (α,β),(α,β)=αTβ=α∥∥βcosθ
    • 正交—— α T β = 0 \alpha^T\beta=0 αTβ=0
    • 模—— ∥ α ∥ = ∑ i = 1 n a i 2 , ∥ α ∥ = 1 时称 α 为单位向量 \Vert\alpha\Vert=\sqrt{\sum\limits_{i=1}^na_i^2},\Vert\alpha\Vert=1时称\alpha为单位向量 α=i=1nai2 ,α=1时称α为单位向量
    • 标准正交向量组——向量组 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs满足 α i T α j = { 0 , i ≠ j 1 , i = j \alpha_i^T\alpha_j=\begin{cases}0,i\ne j\\1,i=j\end{cases} αiTαj={0,i=j1,i=j
  7. 施密特正交化

    线性无关向量组 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,,αm的标准正交化

    β 1 = α 1 \beta_1=\alpha_1 β1=α1

    β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 \beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1 β2=α2(β1,β1)(α2,β1)β1

    β m = α m − ( α m , β 1 ) ( β 1 , β 1 ) β 1 − ⋯ − ( α m , β m − 1 ) ( β m − 1 , β m − 1 ) β m − 1 \beta_m=\alpha_m-\frac{(\alpha_m,\beta_1)}{(\beta_1,\beta_1)}\beta_1-\cdots-\frac{(\alpha_m,\beta_{m-1})}{(\beta_{m-1},\beta_{m-1})}\beta_{m-1} βm=αm(β1,β1)(αm,β1)β1(βm1,βm1)(αm,βm1)βm1

  8. 矩阵的幂—— A m = A A ⋯ A ( m 个 A , A 是 n 阶方阵 ) A^m=AA\cdots A(m个A,A是n阶方阵) Am=AAA(mA,An阶方阵)

  9. 方阵乘积的行列式—— ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=A∣∣B

3.几种重要矩阵

  1. 零矩阵 O O O——每个元素均为零
  2. 单位矩阵 E / I E/I E/I——主对角元素为1其余为0
  3. 数量矩阵——数 k k k和单位矩阵的乘积
  4. 对角矩阵——非主对角元素均为零
  5. 上(下)三角矩阵—— i > / < j i>/<j i>/<j时, a i j = 0 a_{ij}=0 aij=0
  6. 对称矩阵—— A T = A ⇔ a i j = a j i A^T=A\Leftrightarrow a_{ij}=a_{ji} AT=Aaij=aji
  7. 反对称矩阵—— A T = − A ⇔ { a i j = − a i j , i ≠ j a i i = 0 A^T=-A\Leftrightarrow\begin{cases}a_{ij}=-a{ij},i\ne j\\a_{ii}=0\end{cases} AT=A{aij=aij,i=jaii=0
  8. 正交矩阵—— A T A = E ⇔ A T = A − 1 ⇔ A A^TA=E\Leftrightarrow A^T=A^{-1}\Leftrightarrow A ATA=EAT=A1A的行(列)向量组是标准正交向量组
  9. 分块矩阵

4.重要公式

数乘加法乘法
行列式$kA=k^n
转置 ( k A ) T = k A T (kA)^T=kA^T (kA)T=kAT ( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT
( k A ) − 1 = 1 k A − 1 ( k ≠ 0 ) (kA)^{-1}=\frac{1}{k}A^{-1}(k\ne0) (kA)1=k1A1(k=0) ( A + B ) − 1 ≠ A − 1 + B − 1 (A+B)^{-1}\ne A^{-1}+B^{-1} (A+B)1=A1+B1 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
伴随矩阵 ( k A ) ∗ = k n − 1 A ∗ (kA)^*=k^{n-1}A^* (kA)=kn1A ( A + B ) ∗ ≠ A ∗ + B ∗ (A+B)^*\ne A^*+B^* (A+B)=A+B ( A B ) ∗ = B ∗ A ∗ (AB)^*=B^*A^* (AB)=BA

( A T ) − 1 = ( A − 1 ) T ( A ∗ ) − 1 = ( A − 1 ) ∗ ( A T ) ∗ = ( A ∗ ) T (A^T)^{-1}=(A^{-1})^T \\(A^*)^{-1}=(A^{-1})^* \\(A^T)^*=(A^*)^T (AT)1=(A1)T(A)1=(A1)(AT)=(A)T

5.求矩阵的n次幂 A n A^n An

  1. A A A为方阵且 r ( A ) = 1 ( A = α β T ) ⇒ A n = [ t r ( A ) ] n − 1 A r(A)=1(A=\alpha\beta^T)\Rightarrow A^n=[tr(A)]^{n-1}A r(A)=1(A=αβT)An=[tr(A)]n1A

  2. 试算 A 2 , A 3 , A^2,A^3, A2,A3,找规律 , { A 2 = k A ⇒ A n = k n − 1 A A 2 = k E ⇒ { A 2 n = k n E A 2 n + 1 = k n A ,\begin{cases}A^2=kA\Rightarrow A^n=k^{n-1}A\\A^2=kE\Rightarrow\begin{cases}A^{2n}=k^nE\\A^{2n+1}=k^nA\end{cases}\end{cases} , A2=kAAn=kn1AA2=kE{A2n=knEA2n+1=knA

  3. A = 分解 B + D , B D = D B ⇒ A n = ( B + D ) n = ∑ i = 0 n C n i B n D n − i A\stackrel{分解}{=}B+D,BD=DB\Rightarrow A^n=(B+D)^n=\sum\limits_{i=0}^nC_n^iB^nD^{n-i} A=分解B+D,BD=DBAn=(B+D)n=i=0nCniBnDni

  4. 用相似理论 A ∼ B , P − 1 A P = B ⇒ A = P B P − 1 , A n = P B n P − 1 A\sim B,P^{-1}AP=B\Rightarrow A=PBP^{-1},A^n=PB^nP^{-1} AB,P1AP=BA=PBP1,An=PBnP1

6.伴随矩阵

6.1.定义

A ∗ = [ A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n ⋯ A n n ] ( A i j 为代数余子式 ) A^*=\left[ \begin{matrix} A_{11}&A_{21}&\cdots&A_{n1} \\A_{12}&A_{22}&\cdots&A_{n2} \\\vdots&\vdots&&\vdots \\A_{1n}&A_{2n}&\cdots&A_{nn} \end{matrix} \right](A_{ij}为代数余子式) A= A11A12A1nA21A22A2nAn1An2Ann (Aij为代数余子式)

6.2.公式

设 A 为 n 阶 ( n ⩾ 2 ) 矩阵 . 设A为n阶(n\geqslant2)矩阵. An(n2)矩阵.

  1. A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE
  2. ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} A=An1
  3. A ∗ = ∣ A ∣ A − 1 , A A^*=|A|A^{-1},A A=AA1,A可逆
  4. ( A ∗ ) ∗ = ∣ A ∣ n − 2 A (A^*)^*=|A|^{n-2}A (A)=An2A
  5. ∣ ( A ∗ ) ∗ ∣ = ∣ A ∣ ( n − 1 ) 2 |(A^*)^*|=|A|^{(n-1)^2} (A)=A(n1)2

7.矩阵的逆

7.1.定义

对于方阵 A , B , 若 A B = E , 则 A , B 互为逆矩阵 , 且 A − 1 = B , B − 1 = A , A B = B A . 对于方阵A,B,若AB=E,则A,B互为逆矩阵,且A^{-1}=B,B^{-1}=A,AB=BA. 对于方阵A,B,AB=E,A,B互为逆矩阵,A1=B,B1=A,AB=BA.

7.2.性质

  1. ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A
  2. ∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}|=\frac{1}{|A|} A1=A1

7.3.求矩阵的逆

  1. 具体型

    • A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A

    • [ A ∣ E ] ⟶ 初等行变换 [ E ∣ A − 1 ] [A|E]\stackrel{初等行变换}{\longrightarrow}[E|A^{-1}] [AE]初等行变换[EA1]

  2. 抽象型

    • 创造 A B = E ⇒ A − 1 = B AB=E\Rightarrow A^{-1}=B AB=EA1=B
    • 创造 A = B C ( B , C 均可逆 ) ⇒ A − 1 = B − 1 C − 1 A=BC(B,C均可逆)\Rightarrow A^{-1}=B^{-1}C^{-1} A=BC(B,C均可逆)A1=B1C1

8.初等矩阵

8.1.定义

由单位矩阵经过一次初等行(列)变换得到的矩阵称为初等矩阵.

  • E i ( k ) ( k ≠ 0 ) E_i(k)(k\ne0) Ei(k)(k=0) E E E的第 i i i行(列)乘非零常数 k k k(倍乘初等矩阵).
  • E i j E_{ij} Eij E E E交换第 i i i行(列)与第 j j j行(列)(互换初等矩阵)
  • E i j ( k ) E_{ij}(k) Eij(k) E E E的第 j j j行的 k k k倍加到第 i i i行(第 i i i列加到第 j j j列)(倍加初等矩阵)

8.2.性质

E i j E_{ij} Eij E i j ( k ) E_{ij}(k) Eij(k) E i k E_i{k} Eik
行列式-11 k k k
转置 E i j E_{ij} Eij E j i ( k ) E_{ji}(k) Eji(k) E i ( k ) E_i(k) Ei(k)
E i j E_ij Eij E i j ( − k ) E_{ij}(-k) Eij(k) E i ( 1 k ) E_i(\frac{1}{k}) Ei(k1)
伴随矩阵 − E i j -E_{ij} Eij E i j ( − k ) E_{ij}(-k) Eij(k) k E i ( 1 k ) kE_i(\frac{1}{k}) kEi(k1)

8.3.矩阵等价

  • A , B A,B A,B均是 m × n m\times n m×n矩阵,若存在可逆矩阵 P m × m , Q n × n P_{m\times m},Q_{n\times n} Pm×m,Qn×n使得 P A Q = B PAQ=B PAQ=B,则称 A , B A,B A,B是等价矩阵,记作 A ≅ B A\cong B AB.
  • A A A的等价标准形 [ E r O O O ] , r ( A ) = r \left[\begin{matrix}E_r&O\\O&O\end{matrix}\right],r(A)=r [ErOOO],r(A)=r.
  • A A A B B B等价 ⇔ r ( A ) = r ( B ) \Leftrightarrow r(A)=r(B) r(A)=r(B)

9.分块矩阵

  1. 转置: [ A B C D ] T = [ A T C T B T D T ] \left[\begin{matrix}A&B\\C&D\end{matrix}\right]^T=\left[\begin{matrix}A^T&C^T\\B^T&D^T\end{matrix}\right] [ACBD]T=[ATBTCTDT]

  2. 加法:同型,且分法一致, [ A 1 A 2 A 3 A 4 ] + [ B 1 B 2 B 3 B 4 ] = [ A 1 + B 1 A 2 + B 2 A 3 + B 3 A 4 + B 4 ] \left[\begin{matrix}A_1&A_2\\A_3&A_4\end{matrix}\right]+\left[\begin{matrix}B_1&B_2\\B_3&B_4\end{matrix}\right]=\left[\begin{matrix}A_1+B_1&A_2+B_2\\A_3+B_3&A_4+B_4\end{matrix}\right] [A1A3A2A4]+[B1B3B2B4]=[A1+B1A3+B3A2+B2A4+B4]

  3. 数乘: k [ A B C D ] = [ k A k B k C k D ] k\left[\begin{matrix}A&B\\C&D\end{matrix}\right]=\left[\begin{matrix}kA&kB\\kC&kD\end{matrix}\right] k[ACBD]=[kAkCkBkD]

  4. 乘法: [ A B C D ] [ X Y Z W ] = [ A X + B Z A Y + B W C X + D Z C Y + D W ] \left[\begin{matrix}A&B\\C&D\end{matrix}\right]\left[\begin{matrix}X&Y\\Z&W\end{matrix}\right]=\left[\begin{matrix}AX+BZ&AY+BW\\CX+DZ&CY+DW\end{matrix}\right] [ACBD][XZYW]=[AX+BZCX+DZAY+BWCY+DW]

  5. 幂: A , B A,B A,B分别为 m , n m,n m,n阶方阵, [ A O O B ] k = [ A k O O B k ] \left[\begin{matrix}A&O\\O&B\end{matrix}\right]^k=\left[\begin{matrix}A^k&O\\O&B^k\end{matrix}\right] [AOOB]k=[AkOOBk]

  6. 逆: B B B r r r阶可逆矩阵, C C C s s s阶可逆矩阵, { A 1 = [ B O D C ] ⇒ A 1 − 1 = [ B − 1 O − C − 1 D B − 1 C − 1 ] A 2 = [ B D O C ] ⇒ A 2 − 1 = [ B − 1 − B − 1 D C − 1 O C − 1 ] A 3 = [ O B C D ] ⇒ A 3 − 1 = [ − C − 1 D B − 1 C − 1 B − 1 O ] A 4 = [ D B C O ] ⇒ A 4 1 − 1 = [ O C − 1 B − 1 − B − 1 D C − 1 ] \begin{cases}A_1=\left[\begin{matrix}B&O\\D&C\end{matrix}\right]\Rightarrow A_1^{-1}=\left[\begin{matrix}B^{-1}&O\\-C^{-1}DB^{-1}&C^{-1}\end{matrix}\right]\\A_2=\left[\begin{matrix}B&D\\O&C\end{matrix}\right]\Rightarrow A_2^{-1}=\left[\begin{matrix}B^{-1}&-B^{-1}DC^{-1}\\O&C^{-1}\end{matrix}\right]\\A_3=\left[\begin{matrix}O&B\\C&D\end{matrix}\right]\Rightarrow A_3^{-1}=\left[\begin{matrix}-C^{-1}DB^{-1}&C^{-1}\\B^{-1}&O\end{matrix}\right]\\A_4=\left[\begin{matrix}D&B\\C&O\end{matrix}\right]\Rightarrow A41^{-1}=\left[\begin{matrix}O&C^{-1}\\B^{-1}&-B^{-1}DC^{-1}\end{matrix}\right]\end{cases} A1=[BDOC]A11=[B1C1DB1OC1]A2=[BODC]A21=[B1OB1DC1C1]A3=[OCBD]A31=[C1DB1B1C1O]A4=[DCBO]A411=[OB1C1B1DC1]

    (左乘同行,右乘同列,再添负号,副对角调换位置)

    A = [ A 1 A 2 ⋱ A s ] ⇒ A − 1 = [ A 1 − 1 A 2 − 1 ⋱ A s − 1 ] A=\left[\begin{matrix}A_1\\&A_2\\&&\ddots\\&&&A_s\end{matrix}\right]\Rightarrow A^{-1}=\left[\begin{matrix}A_1^{-1}\\&A_2^{-1}\\&&\ddots\\&&&A_s^{-1}\end{matrix}\right] A= A1A2As A1= A11A21As1

    A = [ A 1 A 2 … A s ] ⇒ A − 1 = [ A s − 1 … A 2 − 1 A 1 − 1 ] A=\left[\begin{matrix}&&&A_1\\&&A_2\\&\dots\\A_s\end{matrix}\right]\Rightarrow A^{-1}=\left[\begin{matrix}&&&A_s^{-1}\\&&\dots\\&A_2^{-1}\\A_1^{-1}\end{matrix}\right] A= AsA2A1 A1= A11A21As1

  7. 舒尔公式

    • [ E r O − C A − 1 E n − r ] [ A B C D ] = [ A B O D − C A − 1 B ] \left[\begin{matrix}E_r&O\\-CA^{-1}&E_{n-r}\end{matrix}\right]\left[\begin{matrix}A&B\\C&D\end{matrix}\right]=\left[\begin{matrix}A&B\\O&D-CA^{-1}B\end{matrix}\right] [ErCA1OEnr][ACBD]=[AOBDCA1B]
    • [ A B C D ] [ E r − A − 1 B O E n − r ] = [ A O C D − C A − 1 B ] \left[\begin{matrix}A&B\\C&D\end{matrix}\right]\left[\begin{matrix}E_r&-A^{-1}B\\O&E_{n-r}\end{matrix}\right]=\left[\begin{matrix}A&O\\C&D-CA^{-1}B\end{matrix}\right] [ACBD][ErOA1BEnr]=[ACODCA1B]
    • [ E r O − C A − 1 E n − r ] [ A B C D ] [ E r − A − 1 B O E n − r ] = [ A O O D − C A − 1 B ] \left[\begin{matrix}E_r&O\\-CA^{-1}&E_{n-r}\end{matrix}\right]\left[\begin{matrix}A&B\\C&D\end{matrix}\right]\left[\begin{matrix}E_r&-A^{-1}B\\O&E_{n-r}\end{matrix}\right]=\left[\begin{matrix}A&O\\O&D-CA^{-1}B\end{matrix}\right] [ErCA1OEnr][ACBD][ErOA1BEnr]=[AOODCA1B]

10.矩阵的秩

10.1.定义

A A A m × n m\times n m×n矩阵, A A A中最大的不为零的子式的阶数称为矩阵 A A A的秩,记为 r ( A ) r(A) r(A).

r ( A n × n ) = n ⇔ ∣ A ∣ ≠ 0 ⇔ A 可逆 r(A_{n\times n})=n\Leftrightarrow|A|\ne0\Leftrightarrow A可逆 r(An×n)=nA=0A可逆

10.2.公式

  1. A A A m × n m\times n m×n矩阵,则 0 ⩽ r ( A ) ⩽ min ⁡ { m , n } 0\leqslant r(A)\leqslant\min\{m,n\} 0r(A)min{m,n}.

  2. A A A m × n m\times n m×n矩阵,则 r ( k A ) = r ( A ) ( k ≠ 0 ) r(kA)=r(A)(k\ne0) r(kA)=r(A)(k=0).

  3. A A A m × n m\times n m×n矩阵, P , Q P,Q P,Q分别是 m m m阶、 n n n阶可逆矩阵,则 r ( A ) = r ( P A ) = r ( A Q ) = r ( P A Q ) r(A)=r(PA)=r(AQ)=r(PAQ) r(A)=r(PA)=r(AQ)=r(PAQ).(初等变换不改变矩阵的秩)

    • r ( A B ) < r ( A ) r(AB)<r(A) r(AB)<r(A) B B B n n n阶矩阵,则 r ( B ) < n r(B)<n r(B)<n.
  4. A A A m × n m\times n m×n矩阵, B B B n × s n\times s n×s矩阵

    • r ( A ) = n r(A)=n r(A)=n(列满秩),则 r ( A B ) = r ( B ) r(AB)=r(B) r(AB)=r(B).
    • r ( B ) = n r(B)=n r(B)=n(行满秩),则 r ( A B ) = r ( A ) r(AB)=r(A) r(AB)=r(A).
  5. A A A m × n m\times n m×n矩阵, B B B n × s n\times s n×s矩阵,则 r ( A B ) ⩽ min ⁡ { r ( A ) , r ( B ) } r(AB)\leqslant\min\{r(A),r(B)\} r(AB)min{r(A),r(B)}.

  6. A , B A,B A,B为同型矩阵,则 r ( A + B ) ⩽ r ( [ A , B ] ) ⩽ r ( A ) + r ( B ) r(A+B)\leqslant r([A,B])\leqslant r(A)+r(B) r(A+B)r([A,B])r(A)+r(B).

  7. A A A m × n m\times n m×n矩阵, B B B s × t s\times t s×t矩阵,则 r ( [ A O O B ] ) = r ( [ O A B O ] ) = r ( A ) + r ( B ) r\left(\begin{matrix}\left[\begin{matrix}A&O\\O&B\end{matrix}\right]\end{matrix}\right)=r\left(\begin{matrix}\left[\begin{matrix}O&A\\B&O\end{matrix}\right]\end{matrix}\right)=r(A)+r(B) r([AOOB])=r([OBAO])=r(A)+r(B).

  8. A , B , C A,B,C A,B,C均是 n n n阶方阵,则 r ( A ) + r ( B ) ⩽ r ( [ A O C B ] ) ⩽ r ( A ) + r ( B ) + r ( C ) r(A)+r(B)\leqslant r\left(\begin{matrix}\left[\begin{matrix}A&O\\C&B\end{matrix}\right]\end{matrix}\right)\leqslant r(A)+r(B)+r(C) r(A)+r(B)r([ACOB])r(A)+r(B)+r(C).

  9. A A A m × n m\times n m×n矩阵, B B B n × s n\times s n×s矩阵,则 r ( A B ) ⩾ r ( A ) + r ( B ) − n r(AB)\geqslant r(A)+r(B)-n r(AB)r(A)+r(B)n.

    • A B = O AB=O AB=O时, r ( A ) + r ( B ) ⩽ n r(A)+r(B)\leqslant n r(A)+r(B)n.
  10. A A A m × n m\times n m×n实矩阵,则 r ( A ) = r ( A T ) = r ( A A T ) = r ( A T A ) r(A)=r(A^T)=r(AA^T)=r(A^TA) r(A)=r(AT)=r(AAT)=r(ATA).

  11. A A A n n n阶方阵,则 r ( A ∗ ) = { n , r ( A ) = n 1 , r ( A ) = n − 1 0 , r ( A ) < n − 1 r(A^*)=\begin{cases}n,r(A)=n\\1,r(A)=n-1\\0,r(A)<n-1\end{cases} r(A)= n,r(A)=n1,r(A)=n10,r(A)<n1

  12. n n n阶矩阵 A A A满足 A 2 − ( k 1 + k 2 ) A + k 1 k 2 E = O ( k 1 ≠ k 2 ) A^2-(k_1+k_2)A+k_1k_2E=O(k_1\ne k_2) A2(k1+k2)A+k1k2E=O(k1=k2),则 r ( A − k 1 E ) + r ( A − k 2 E ) = n r(A-k_1E)+r(A-k_2E)=n r(Ak1E)+r(Ak2E)=n.

    • A 2 = A A^2=A A2=A,则 r ( A ) + r ( A − E ) = n r(A)+r(A-E)=n r(A)+r(AE)=n
    • A 2 = E A^2=E A2=E,则 r ( A + E ) + r ( A − E ) = n r(A+E)+r(A-E)=n r(A+E)+r(AE)=n
  13. A A A m × n m\times n m×n矩阵,则 A x = 0 Ax=0 Ax=0的基础解系所含向量的个数 s = n − r ( A ) s=n-r(A) s=nr(A).

  14. 方程组 A m × n x = 0 A_{m\times n}x=0 Am×nx=0 B s × n x = 0 B_{s\times n}x=0 Bs×nx=0同解 ⇔ r ( A ) = r ( A B ) = r ( B ) \Leftrightarrow r(A)=r\left(\begin{matrix}A\\B\end{matrix}\right)=r(B) r(A)=r(AB)=r(B).

  15. 设两个向量组: ( Ⅰ ) α 1 , α 2 ⋯   , α s ( Ⅱ ) β 1 , β 2 , ⋯   , β t (Ⅰ)\alpha_1,\alpha_2\cdots,\alpha_s(Ⅱ)\beta_1,\beta_2,\cdots,\beta_t ()α1,α2,αs()β1,β2,,βt,则 r ( Ⅰ ) = r ( Ⅱ ) = r ( Ⅰ , Ⅱ ) ⇔ r(Ⅰ)=r(Ⅱ)=r(Ⅰ,Ⅱ)\Leftrightarrow r()=r()=r(,)向量组 ( Ⅰ ) (Ⅰ) ()与向量组 ( Ⅱ ) (Ⅱ) ()等价.

  16. A ∼ Λ A\sim\Lambda AΛ,则 n i = n − r ( λ i E − A ) n_i=n-r(\lambda_iE-A) ni=nr(λiEA),其中 λ i \lambda_i λi n i n_i ni重特征根.

  17. A ∼ Λ A\sim\Lambda AΛ,则 r ( A ) r(A) r(A)等于非零特征值的个数,重根按重数算.

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值