第二章 数学/模型基础 (数学部分)-1

1. 线性代数

是的没错,逃不过的。本章内容是简单介绍需要掌握的基本数学/模型基础

1.1 标量(Scalar)

只有大小没有方向的物理量,如时间,温度、质量等, a_1 = 1 ; 如果该标量是实数,记做a_1\in R

1.2 向量(Vector)

又称矢量,既包含大小又包含方向的物理量,如速度、位移等, 一 般用粗体变量表示; 如果是n维实数矢量,记做a\in R^n

                            

1.3 矩阵(Matrix)

矩阵是一个二维数组,其中的每一个元素一般由两个索引来确定, 一般用大写变量表示。m行n列的实数矩阵,记做 A \in \mathbb{R}^{m \times n}

A_{ij} = a_{ij} 表示矩阵A第i行第j列的元素

1.4 张量(Tensor)

矢量概念的推广,可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数

标量是0阶张量,矢量是一阶张量, 矩阵是二阶张量;三维及以上数组一般称为张量

1.5 矩阵加法

两个矩阵满足行数和列数相等时,两个矩阵可以相加

1.6 矩阵乘法

两个矩阵满足第一个矩阵的列数与第二个矩阵的行数相等时,两个矩阵可以相乘AB = C

矩阵乘法满足分配律:A(B+C) = AB+AC

矩阵乘法满足结合律:A(BC) = (AB)C

但矩阵乘法不满足交换律 AB≠BA

1.7 矩阵的转置(Transpose)

将矩阵的行列互换得到的新矩阵称为转置矩阵

1.8 矩阵的秩(Rank)

矩阵列向量中的极大线性无关组的数目,记作矩阵的列秩,同样可以定义行秩。行秩=列秩=矩阵的秩,通常记作rank(A)

线性相关组:如果存在不全为零的数\alpha _1, \alpha _2,...,\alpha _t 使得

其中o是m维的全零向量,那么向量组a_1,a_2,...a_t 称为线性相关

1.9 矩阵的逆

若矩阵A为方阵,当rank(A_{n\times n})< n,称A为奇异矩阵或不可逆矩阵

若矩阵A为方阵,当rank(A_{n\times n}) = n,称A为非奇异矩阵或可逆矩阵

其逆矩阵A^{-1}满足以下条件,则称A^{-1}为矩阵A的逆矩阵

                                                             AA^{-1} = A^{-1}A = I_n

矩阵的广义逆矩阵:

如果矩阵不为方阵或者是奇异矩阵,不存在逆矩阵,但是可以计算其广义逆矩阵或者伪逆矩阵

对于矩阵A,如果存在矩阵B使得ABA=A,则称B为A的广义逆矩阵

通过对矩阵A进行奇异值分解,来计算其广义逆矩阵

相关计算都存在库函数:MATALB: inv() 和pinv()函数; PyTorch: inverse()和pinverse()函数

1.10 矩阵分解

特征分解和奇异值分解是机器学习中常见的矩阵分解

矩阵的特征值和特征向量:

若矩阵A为方阵,则存在非零向量x和常数λ满足Ax = λx,则称λ为矩阵A的一个特征值,x为矩阵A关于λ的特征向量;

An×n的矩阵具有n个特征值,λ1 ≤ λ2 ≤ ⋯ ≤ λn,其对应的n个特征向量为u1,u2,⋯,un

矩阵的迹(trace)和行列式(determinant)的值

矩阵特征分解(Eigendecomposition):

若矩阵An×n存在n个不同的特征值,那么矩阵A可以分解为:

其中u_i是标准化的特征向量

奇异值分解(Singular value decomposition):

对于任意矩阵Amxn,存在正交矩阵Umxm,Vnxn,使得其满足

则称上式为矩阵A的特征分解,其中Σ为mxn的矩阵

  • 25
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值