基于信息增强传输的时空图神经网络交通流预测

本文提出了一种名为STEGN的新型时空图神经网络模型,用于交通流预测。该模型通过多特征注意力机制捕捉交通数据的复杂特征关系,信息增强传输机制动态捕获空间依赖,时间注意力模块自适应提取时间序列关系,线性与非线性融合机制结合数据线性与非线性特征。实验证明,STEGN在交通流预测上优于现有先进方法,有效提升了预测精度。
摘要由CSDN通过智能技术生成

摘 要 交通问题不仅影响人们的出行,同时也会带来环境污染以及安全等问题,准确的交通流预测是构建智能交通系统、预防和缓解交通问题的关键.目前的预测方法大多没有考虑到交通流动态的时空相关性、周期性以及线性与非线性等特点.在充分考虑上述因素的基础上,提出一种基于信息增强传输的时空图神经网络模型,主要包含多特征注意力模块、信息增强传输模块、时间注意力模块以及线性与非线性融合模块.其中,多特征注意力模块捕获多种交通特征之间的内在联系,考虑交通流的周期性;信息增强传输模块充分利用了交通网络信息,以增强交通网络的信息传输能力,进而挖掘出复杂动态的空间依赖关系;时间注意力模块负责自适应地提取不同时间间隔之间的依赖关系;线性与非线性融合模块则同时考虑了数据的线性与非线性特征.论文在真实数据集上进行了大量对比实验,实验结果表明,对比目前较为先进的基线方法,提出的方法在交通流的预测性能方面,体现了较为明显的优势.

关键词 交通流预测;图神经网络;时空;信息增强;注意力

随着经济社会的高速发展,交通问题日益受到人们的关注,与日俱增的汽车带来了日益拥堵的交通.为解决交通问题,越来越多的国家开始重视智能交通系统(intelligent transportation system, ITS)的建设.交通流预测是智能交通系统中不可缺少的部分,交通流是指道路上的车流量,其可以很好地反映道路的状况.如果能提前准确预测交通流,就能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值