模糊控制应用(一)模糊PID在一个三阶系统上的应用
1. 系统概述
设有系统传函
G
(
s
)
=
2
80
s
3
+
70
s
2
+
13
s
+
1
G(s)=\frac{2}{80s^3+70s^2+13s+1}
G(s)=80s3+70s2+13s+12为三阶系统,其闭环阶跃响应曲线为
可以看出:
1)系统静态误差比较大。系统稳态幅值为0.67左右,而期望值为1.
2)系统超调量比较大,大约为
0.87
−
0.67
0.67
=
29.9
%
\frac{0.87-0.67}{0.67}=29.9\%
0.670.87−0.67=29.9%。
因此需要进行调节。
2. 经典PID调节
现加入PID调节器,对误差
e
e
e进行调节。simulink框图如下:
这里PID参数的调节采用临界比例法(又叫稳定边界法),确定PID参数
k
p
=
1.041
,
k
i
=
0.135
,
k
d
=
2.002
k_p=1.041,k_i=0.135,k_d=2.002
kp=1.041,ki=0.135,kd=2.002。
采用PID调节后的闭环阶跃响应曲线如下:
可以看出:
1)采用PID调节后,系统稳态误差为0;
2)但系统超调量变化不大:
1.3
−
1
1
=
30
%
\frac{1.3-1}{1}=30\%
11.3−1=30%;
3)且系统调节时间依然不令人满意。
3. 模糊PID控制
在原来PID控制器的位置引入模糊控制器,并与PID相结合组成模糊PID控制器。其结构框图如下:
模糊控制器的输入信号分别为误差
e
e
e和误差速率
e
c
=
d
e
d
t
ec=\frac{de}{dt}
ec=dtde,输出信号为PID三个参数的变化量
Δ
k
p
,
Δ
k
i
,
Δ
k
d
\Delta k_p,\Delta k_i,\Delta k_d
Δkp,Δki,Δkd。三个变化量与原数值
k
p
0
,
k
i
0
,
k
d
0
k_{p0},k_{i0},k_{d0}
kp0,ki0,kd0之和
k
p
0
+
Δ
k
p
,
k
i
0
+
Δ
k
i
,
k
d
0
+
Δ
k
d
k_{p0}+\Delta k_p,k_{i0}+\Delta k_i,k_{d0}+\Delta k_d
kp0+Δkp,ki0+Δki,kd0+Δkd为新的PID参数,即:
{
k
p
=
k
p
0
+
Δ
k
p
k
i
=
k
i
0
+
Δ
k
i
k
d
=
k
d
0
+
Δ
k
d
\begin{cases} k_p = k_{p0}+\Delta k_p \\ k_i=k_{i0}+\Delta k_i \\ k_d=k_{d0}+\Delta k_d \end{cases}
⎩⎪⎨⎪⎧kp=kp0+Δkpki=ki0+Δkikd=kd0+Δkd同样地,模糊PID输出量为
u
=
e
k
p
+
k
i
∫
e
d
t
+
k
d
e
c
=
(
k
p
0
+
Δ
k
p
)
e
+
(
k
i
0
+
Δ
k
i
)
∫
e
d
t
+
(
k
d
0
+
Δ
k
d
)
d
e
d
t
\begin{aligned} u&=ek_p +k_i \int e dt+ k_d ec \\ &=\left(k_{p0}+\Delta k_p \right) e + \left(k_{i0}+\Delta k_i \right) \int e dt+ \left( k_{d0}+\Delta k_d \right) \frac{de}{dt} \end{aligned}
u=ekp+ki∫edt+kdec=(kp0+Δkp)e+(ki0+Δki)∫edt+(kd0+Δkd)dtde
采用模糊控制后得到的闭环阶跃相应如下:
可以看出:
1)加入模糊PID后,振荡明显减少;
2)超调减小,为
1.23
−
1
1
=
23
%
\frac{1.23-1}{1}=23\%
11.23−1=23%;
3)调节时间变快。
对于本文中举例的三阶系统来说,PID可以达到一定的工程要求,但模糊PID则进一步优化了其动态性能,使得振荡减少,超调下降,调节时间变快。
下一节将把模糊PID应用在四旋翼控制上。