优化方法理论合集(5)——波尔茨问题

1. 问题描述

给出如下条件:

  1. 时间区间
    t ∈ [ t 0 , t k ] t \in \left[ t_0, t_k \right] t[t0,tk]
  2. 性能指标
    J = ∫ t 0 t k F ( t , x , x ˙ ) d t + Φ ( x ( t 0 ) , x ( t k ) ) J = \int _{t_0} ^{t_k} F \left( t, x, \dot x \right) dt + \Phi \left( x(t_0), x(t_k) \right) J=t0tkF(t,x,x˙)dt+Φ(x(t0),x(tk))须注意,这里 J J J由两部分组成,第一部分为积分部,第二部分为终端部
    由于已经具有终端部了,所以不必给出边界条件,边界条件实际上已经包含于积分部 Φ \Phi Φ中。

需要注意的是,由于 x 0 , x k x_0, x_k x0,xk均未知,只知道时间区间,因此 x 0 x_0 x0 x k x_k xk实际上位于两条直线上:

波尔茨问题截止条件
图中虚线为截止线,是 x 0 , x k x_0, x_k x0,xk所在的两条直线。由于 x 0 , x k x_0,x_k x0,xk可能是位于两条虚线上任意一点,因此连接 x 0 x_0 x0 x k x_k xk的两条虚线之间的所有曲线构成曲线簇

2. 解题步骤

首先根据积分部列出欧拉方程:
F x − d d t F x ˙ = 0 (1) F_x - \frac{d}{dt} F_{\dot x} = 0 \tag{1} FxdtdFx˙=0(1)随后列出方程组,来限制曲线簇和 x 0 , x k x_0, x_k x0,xk之间的关系
{ F x ˙ ∣ t = t 0 = Φ x ( t 0 ) F x ˙ ∣ t = t k = − Φ x ( t k ) (2) \begin{cases} F_{\dot x} \rvert _{t = t_0} = \Phi _{x (t_0)} \\ F_{\dot x} \rvert _{t = t_k} = - \Phi _{x (t_k)} \tag{2} \end{cases} {Fx˙t=t0=Φx(t0)Fx˙t=tk=Φx(tk)(2)其中
F x ˙ = ∂ F ∂ x ˙ , Φ x ( t 0 ) = ∂ Φ ∂ x ( t 0 ) , Φ x ( t k ) = ∂ Φ ∂ x ( t k ) F_{\dot x} = \frac{\partial F}{\partial \dot x}, \quad \Phi _{x(t_0)} = \frac{\partial \Phi}{\partial x(t_0)}, \quad \Phi _{x(t_k)} = \frac{\partial \Phi}{\partial x(t_k)} Fx˙=x˙F,Φx(t0)=x(t0)Φ,Φx(tk)=x(tk)Φ注意:若 Φ \Phi Φ表达式中不含有 x ( t 0 ) x(t_0) x(t0) x ( t k ) x(t_k) x(tk),则对应的 ∂ Φ ∂ x ( t i ) = 0 \frac{\partial \Phi}{\partial x(t_i)} = 0 x(ti)Φ=0;且(2)式中第二个式子右侧有负号

极值存在的充分条件依然为勒让德条件:
{ 若 F x ˙ x ˙ > 0 , 则 J → m i n 若 F x ˙ x ˙ < 0 , 则 J → m a x \begin{cases} 若 F_{\dot x \dot x } > 0,则J \rightarrow min \\ 若 F_{\dot x \dot x } < 0,则J \rightarrow max \end{cases} {Fx˙x˙>0JminFx˙x˙<0Jmax

3. 例题

给出以下例题:

时间区间 t ∈ [ 0 , 1 ] t \in \left[ 0, 1 \right] t[0,1]
性能指标 J = ∫ 0 1 ( x ˙ 2 − x ) d t + x 2 ( 1 ) → e x t r . J = \int _0 ^1 \left( \dot x^2 - x \right) dt + x^2(1) \rightarrow extr. J=01(x˙2x)dt+x2(1)extr.

□ \square
F = x ˙ 2 − x , F x = − 1 , F x ˙ = 2 x ˙ F = \dot x^2 - x, \quad F_x = -1, \quad F_{\dot x} = 2 \dot x F=x˙2x,Fx=1,Fx˙=2x˙则代入欧拉方程(1)有
x ¨ = − 1 2 , ⟹ x ( t ) = − 1 4 t 2 + C 1 t + C 2 (3) \ddot x = - \frac{1}{2}, \Longrightarrow x(t) = - \frac{1}{4} t^2 + C_1 t + C_2 \tag{3} x¨=21,x(t)=41t2+C1t+C2(3)代入(2)有
2 x ˙ ( t 0 ) = 2 x ˙ ( 0 ) = 0 , ⟹ x ˙ ( 0 ) = 0 2 x ˙ ( t k ) = 2 x ˙ ( 1 ) = − 2 x ( 1 ) ⟹ x ˙ ( 1 ) = − x ( 1 ) 2 \dot x(t_0) = 2 \dot x (0) = 0, \Longrightarrow \dot x(0) = 0 \\ 2 \dot x(t_k) = 2 \dot x(1) = - 2 x (1) \Longrightarrow \dot x(1) = - x(1) 2x˙(t0)=2x˙(0)=0,x˙(0)=02x˙(tk)=2x˙(1)=2x(1)x˙(1)=x(1)把这两个式子代入到(3)的导数表达式中,能够得到
C 1 = 0 , C 2 = 3 4 C_1 = 0, \quad C_2 = \frac{3}{4} C1=0,C2=43于是最优轨迹为
x ∘ ( t ) = − 1 4 t 2 + 3 4 x ^{\circ} (t) = - \frac{1}{4} t^2 + \frac{3}{4} x(t)=41t2+43且根据勒让德条件可知此时 J J J取最小值:
F x ˙ x ˙ = 2 > 0 , J → m i n F_{\dot x \dot x } = 2 >0, \quad J \rightarrow min Fx˙x˙=2>0,Jmin此时 J J J取值为
J ∘ = ∫ 0 1 ( x ˙ 2 − x ) d t + x 2 ( 1 ) = − 1 3 . □ J ^{\circ} = \int _0 ^1 \left( \dot x^2 - x \right) dt + x^2(1) = - \frac{1}{3}. \quad \square J=01(x˙2x)dt+x2(1)=31.

4. 其他tips

从例题中可以看出,波尔茨条件可以只给定一端的边界条件,使其显含于 Φ \Phi Φ中,而另一端不给定。
但是,如果时间区间 t t t不给定,则波尔茨问题无法解决。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值