💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
主要做的是考虑多微网电能互补共享的微网双层优化模型,同时优化配电网运营商的动态电价以及微网用户的能量管理策略。在这个双层优化模型中,需要考虑以下几个方面的扩展:
1. **电能互补共享机制设计**:针对多微网系统,需要设计电能互补共享机制,以实现微网之间的电能共享和互助。这可能涉及制定合适的电能交易规则、定价机制以及能量调度策略,确保能够在微网之间实现灵活高效的能源共享。
2. **动态电价优化**:在优化配电网运营商的动态电价方面,除了考虑最大化收益外,还可以考虑其他因素,如电网稳定性、可再生能源的集成程度等。优化动态电价需要综合考虑这些因素,以制定合理的电价策略,促进微网系统的可持续发展。
3. **微网用户能量管理策略**:对于微网用户而言,能量管理策略的优化可以涉及多方面,包括能源采购策略、储能设备的控制策略、负荷调度策略等。需要综合考虑用户的能源需求、成本考量和环境友好性等因素,制定最优的能量管理策略,以降低运行成本并最大化能源利用效率。
4. **智能算法与协同控制**:为了实现微网系统的协同优化,可以引入智能算法和协同控制技术。这包括基于人工智能的优化算法、分布式控制方法以及协同学习机制等,以实现微网系统各个组成部分之间的信息共享和协同决策,从而提高系统整体性能。
5. **风险管理与容错设计**:考虑到微网系统可能面临的各种不确定性和风险,需要进行风险管理与容错设计。这包括对潜在风险的识别、评估和应对措施的制定,以确保微网系统在面对突发情况时能够及时做出应对,并保持系统的可靠性和稳定性。
可以更全面地考虑多微网电能互补共享的微网双层优化模型,在实现配电网-微网双赢的同时,进一步提升系统的效率、可靠性和可持续性。
多微网电能互补与需求响应的微网双层优化模型研究是一种研究方法,旨在优化多个微网系统中电能互补和需求响应的运行。这种研究模型通常包含两个层次的优化问题:
1. **上层优化问题**:通常是一个全局性的问题,旨在优化多个微网之间的电能互补和资源调配,以最大化系统整体的效益或满足特定的目标。这可能涉及到考虑多个微网之间的能源流动、电能交易、需求响应等方面的决策,以确保整个系统的可靠性、经济性和环境友好性。
2. **下层优化问题**:是指每个微网内部的优化问题,旨在最大化本地资源的利用、满足本地需求以及响应上层系统对于电能的要求。这可能涉及到微网内部的能源管理、储能控制、负荷调度等方面的决策,以确保微网的稳定运行和最大化本地资源的利用率。
在这种双层优化模型中,上层问题和下层问题通常是相互耦合的,即上层问题的决策会影响到下层问题的解,而下层问题的结果又会反馈到上层问题中。因此,需要采用适当的优化算法和协调机制来解决这种耦合性,以实现整个系统的优化运行。
该研究模型的主要目标可能包括但不限于以下几个方面:
- 最大化整个多微网系统的能源利用效率。
- 最小化系统运行成本,包括能源采购成本、传输损耗等。
- 最大化系统的可靠性和稳定性,以确保在各种运行条件下都能满足电能需求。
- 最大化可再生能源的利用,减少对传统能源的依赖,降低碳排放。
- 优化电能交易机制,促进微网之间的合作和互惠。
要实现这种研究模型,需要综合考虑多个因素,包括微网内部的能源组成、负荷特性、储能装置的容量和效率等,以及微网之间的地理位置、电网连接情况、能源价格等外部因素。同时,还需要考虑到潜在的不确定性因素,如天气变化、负荷波动等,采用相应的风险管理和鲁棒优化方法来提高系统的稳定性和韧性。
📚2 运行结果
部分代码:
%此处循环含义解释:
%首先,计算主函数,得出外部购电负荷
%其次,通过外部购电负荷,优化得出最优价格
%最后,通过最优价格再次计算主函数,得出调度策略
%i从1到4循环了共计4次,循环次数其实可以自己设置的
%sc可以认为是运营商的优化函数,优化出最优电价
%xc可以认为是微网的调度策略,优化出各个微网的具体运行策略
%运营商优化出来的价格,也就是jg11,传递给微网函数中进行下一步优化
for i=1:4
[f2,jg11]=sc(wrfh1);
ff2(i)=value(f2);
[f,wrfh1,nrfh1,fy1,fy2,fy3,soc1,gf1,rfh1]=xc(jg11);
%if i>1
% if abs(ff2(i)-ff2(i-1))<1
% k=i
% break;
%end
%end
end
fprintf('最终用电费用')
value(f)
fprintf('配网运营商收益')
value(-ff2(i-1))
fprintf('三个微网用电费用分别是')
fy1
fy2
fy3
zfh=jgfh+rfh1;
figure;
subplot(3,1,1);
plot(soc1(1:tm),'r-o')
title('微网1soc');
subplot(3,1,2);
plot(soc1(tm+1:2*tm),'b-*')
title('微网2soc');
subplot(3,1,3);
plot(soc1(2*tm+1:3*tm),'c-')
title('微网3soc');
figure;
plot(ppv1(1:tm),'r-o')
hold on
plot(gf1(1:tm),'b-*')
legend('原始光伏','光伏参与量');
title('微网1光伏');
figure;
plot(ppv2(1:tm),'r-o')
hold on
plot(gf1(tm+1:2*tm),'b-*')
legend('原始光伏','光伏参与量')
title('微网2光伏');
figure;
plot(ppv3(1:tm),'r-o')
hold on
plot(gf1(2*tm+1:3*tm),'b-*')
legend('原始光伏','光伏参与量')
title('微网3光伏');
figure;
plot(jg11,'b-*')
title('电价');
figure;
plot(zfh(1:tm),'r-o')
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]李盛伟,李鹏飞,白星振,等.计及储能和用户需求响应的并网型微网优化调度模型[J].电工电能新技术, 2018, 37(9):8.DOI:10.12067/ATEEE1712024.
[2]徐艳春,刘海权,孙思涵,等.计及需求响应和共享储能的多微网系统双层优化调度[J].电力自动化设备, 2023, 43(6):18-26.
[3]刘慧.基于需求侧响应的微网能量管理策略研究[D].[2024-03-17].