考研数学二 2011-2024年 真题积累总结【积分篇】定积分计算_定积分应用_反常积分_二重积分

1.定积分计算

1.1 去掉绝对值分类讨论问题

在这里插入图片描述

该问题的难点在于,如何去掉绝对值,分类讨论是用t取值还是用x取值,t从0变换到1,可以理解为时刻都在变化,所以x更适合做为标杆,所以分类讨论x的取值,进而去掉绝对值。

在这里插入图片描述

1.2 求f(x)在区间上的平均值,证明f(x)在区间上的唯一零点

已知函数导数,求原函数的常见思考方向:

思考方向为,分布积分,这样在交换的时候就可以,用上它的导数

遇到难算的积分常见的思考方向

  • 凑微分,能否凑出微分,便于进行微分的计算
  • 如果是二重积分的形式,考虑交换积分次序
  • 带根号的积分,考虑三角换原

在这里插入图片描述
在这里插入图片描述

1.3 定积分比大小专项

1.3.1 知识回顾

定积分的正负性:
在某一个积分区域内,f(x)>0,其中f(x)代表被积函数,定积分大于0.
在某一个积分区域内,f(x)<0,其中f(x)代表被积函数,定积分小于0.

相同积分区域,不同被积函数比较大小
若一个被积函数>0,一个被积函数<0,直接说明定积分一个大于0,一个小于0

若两个被积函数都>0,则需要比较这两个被积函数的大小,被积函数大的,定积分大

1.3.2【题型一】被积函数恒正

思路&&方法:

在比较被积函数的过程中

  • 分子分母两个中至少有一个相同

解释说明:被积函数中,至少让一部分相同,比较另一个部分,才能比较出被积函数

  • 一些经典的不等式关系

cosx≥sinx,当π/4≥x≥0
在这里插入图片描述

  • 借助“1”来比较
    比如说通过自行构造一些被积函数=1的情况,将其他被积函数与之比较

例题:
在这里插入图片描述

1.3.3 【题型二】被积函数有正有负

拉伸画图法

一般来说被积函数是某几个函数的乘积
拉伸法画图主要画有正有负的那部分,通过另一部分(恒正恒负可大可小)的这部分进行拉伸画图,比较大小,确定正负

划分积分区间,敌进我退统一积分区间

不画图,通过计算,可以把令被积函数正负的区间单独拆分开,然后通过换元法,将这些积分统一成一个积分再进行比较

1.4 三角换元

在这里插入图片描述

1.5 积分拆分减法+换元

在这里插入图片描述
在这里插入图片描述

2.定积分应用

2.1 定积分计算体积

真题如下:
在这里插入图片描述

(1)求容器的容积
在这里插入图片描述

题目来源:2011年 数学二

3.变限积分

3.1 将变限积分内部的x-t换元

注意换元有三换,别落下某一种
在这里插入图片描述

4.反常积分

4.1 比较审敛法

本题中,不能直接一眼比较出来,需要先进行极限的化简,如趋近于0时,用等价无穷小替换,趋近于∞时,用抓大头

在这里插入图片描述

题目来源:2025李林六套卷 卷1 选择3

4.2 积分敛散性的判断 直接计算法和比较审敛法

在这里插入图片描述

两种方法:

  • 直接计算(极限是否存在)是否收敛
  • 比较审敛法

在这里插入图片描述

题目来源:2016年 数学二 第3题

4.3 反常积分的计算求导

在这里插入图片描述
在这里插入图片描述

5.二重积分

5.1 二重积分的抽象计算问题

计算二重积分,但是二重积分被极函数是抽象的且含有导数的情况
真题如下:
在这里插入图片描述

本题中,因为被积函数中含有导数,而且题目中给出的条件中,也指向了没有导数的情况,所以考虑,通过分布积分法,使函数降阶
本题中一个难点是,交换积分次数,当对x求导后跟的是dy的时候,没法用分布积分了,考虑交换积分次序。

题目来源:2011年 数学二 21题

5.2 范围图像都需要自己确定 求旋转体体积 绕y=-1旋转体体积

在这里插入图片描述
问题分析:
在得出f(x,y)之后,这个图像的图形,难以精确的画出,只能得到关于y=-1对称,是封闭曲线,然后根据对x轴旋转体体积分析出,对y=-1旋转体体积的被积函数应该是π(y+1)2,dx这个厚度范围,由f(x,y)确定。然后计算定积分。

在这里插入图片描述
题目来源:2014年 数学二 21题

5.3 二重积分的求导数问题

在这里插入图片描述

二重积分的求导问题,将二重积分化为一重积分,积分若不好化考虑两个方向

  • 交换积分次序
  • 分布积分法

这里采用交换积分次序,本题中比较关键的一步,是画出积分区域,就正常化即可,在计算的过程中就发现,t2与t,跟线的关系

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二叉树果实

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值