1.定积分计算
1.1 去掉绝对值分类讨论问题
该问题的难点在于,如何去掉绝对值,分类讨论是用t取值还是用x取值,t从0变换到1,可以理解为时刻都在变化,所以x更适合做为标杆,所以分类讨论x的取值,进而去掉绝对值。
1.2 求f(x)在区间上的平均值,证明f(x)在区间上的唯一零点
已知函数导数,求原函数的常见思考方向:
思考方向为,分布积分,这样在交换的时候就可以,用上它的导数
遇到难算的积分常见的思考方向
- 凑微分,能否凑出微分,便于进行微分的计算
- 如果是二重积分的形式,考虑交换积分次序
- 带根号的积分,考虑三角换原
1.3 定积分比大小专项
1.3.1 知识回顾
定积分的正负性:
在某一个积分区域内,f(x)>0,其中f(x)代表被积函数,定积分大于0.
在某一个积分区域内,f(x)<0,其中f(x)代表被积函数,定积分小于0.
相同积分区域,不同被积函数比较大小
若一个被积函数>0,一个被积函数<0,直接说明定积分一个大于0,一个小于0
若两个被积函数都>0,则需要比较这两个被积函数的大小,被积函数大的,定积分大
1.3.2【题型一】被积函数恒正
思路&&方法:
在比较被积函数的过程中
- 分子分母两个中至少有一个相同
解释说明:被积函数中,至少让一部分相同,比较另一个部分,才能比较出被积函数
- 一些经典的不等式关系
cosx≥sinx,当π/4≥x≥0
- 借助“1”来比较
比如说通过自行构造一些被积函数=1的情况,将其他被积函数与之比较
例题:
1.3.3 【题型二】被积函数有正有负
拉伸画图法
一般来说被积函数是某几个函数的乘积
拉伸法画图主要画有正有负的那部分,通过另一部分(恒正恒负可大可小)的这部分进行拉伸画图,比较大小,确定正负
划分积分区间,敌进我退统一积分区间
不画图,通过计算,可以把令被积函数正负的区间单独拆分开,然后通过换元法,将这些积分统一成一个积分再进行比较
1.4 三角换元
1.5 积分拆分减法+换元
2.定积分应用
2.1 定积分计算体积
真题如下:
(1)求容器的容积
题目来源:2011年 数学二
3.变限积分
3.1 将变限积分内部的x-t换元
注意换元有三换,别落下某一种
4.反常积分
4.1 比较审敛法
本题中,不能直接一眼比较出来,需要先进行极限的化简,如趋近于0时,用等价无穷小替换,趋近于∞时,用抓大头
题目来源:2025李林六套卷 卷1 选择3
4.2 积分敛散性的判断 直接计算法和比较审敛法
两种方法:
- 直接计算(极限是否存在)是否收敛
- 比较审敛法
题目来源:2016年 数学二 第3题
4.3 反常积分的计算求导
5.二重积分
5.1 二重积分的抽象计算问题
计算二重积分,但是二重积分被极函数是抽象的且含有导数的情况
真题如下:
本题中,因为被积函数中含有导数,而且题目中给出的条件中,也指向了没有导数的情况,所以考虑,通过分布积分法,使函数降阶
本题中一个难点是,交换积分次数,当对x求导后跟的是dy的时候,没法用分布积分了,考虑交换积分次序。
题目来源:2011年 数学二 21题
5.2 范围图像都需要自己确定 求旋转体体积 绕y=-1旋转体体积
问题分析:
在得出f(x,y)之后,这个图像的图形,难以精确的画出,只能得到关于y=-1对称,是封闭曲线,然后根据对x轴旋转体体积分析出,对y=-1旋转体体积的被积函数应该是π(y+1)2,dx这个厚度范围,由f(x,y)确定。然后计算定积分。
题目来源:2014年 数学二 21题
5.3 二重积分的求导数问题
二重积分的求导问题,将二重积分化为一重积分,积分若不好化考虑两个方向
- 交换积分次序
- 分布积分法
这里采用交换积分次序,本题中比较关键的一步,是画出积分区域,就正常化即可,在计算的过程中就发现,t2与t,跟线的关系