【栅格地图路径规划】D星和D星_Lite算法机器人栅格地图路径规划【含Matlab源码 2530期】

本文介绍了D*和D* Lite算法在机器人动态路径规划中的应用,这两种算法适用于环境未知或变化的场景。算法以目标点开始搜索,通过优先队列OpenList进行节点搜索,利用K值进行动态调整。当遇到障碍物时,通过Modify-Cost函数调整路径成本并传播到受影响的节点。相比于A*,D*算法更注重从目标向起点的搜索,减少计算开销。文章提供Matlab源码并展示了运行结果。
摘要由CSDN通过智能技术生成

在这里插入图片描述

⛄一、简介

“D*算法”的名称源自 Dynamic A Star,最初由Anthony Stentz于“Optimal and Efficient Path Planning for Partially-Known Environments”中介绍。它是一种启发式的路径搜索算法,适合面对周围环境未知或者周围环境存在动态变化的场景。

1 算法介绍
同A算法类似,D-star通过一个维护一个优先队列(OpenList)来对场景中的路径节点进行搜索,所不同的是,D不是由起始点开始搜索,而是以目标点为起始,通过将目标点置于Openlist中来开始搜索,直到机器人当前位置节点由队列中出队为止(当然如果中间某节点状态有动态改变,需要重新寻路,所以才是一个动态寻路算法)。

2 .1 符号表示
本部分主要介绍一下论文中用到的一些符号及其含义。
论文中将地图中的路径点用State表示,每一个State包含如下信息:

Backpointer: 指向前一个state的指针,指向的state为当前状态的父辈,当前state称为指针指向state的后代,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值