Dobot magician机械臂抓取实战---机器人导论(1)

文章详细阐述了机器人位置和姿态的数学描述,包括笛卡尔坐标系中的位置表示以及通过旋转矩阵描述的姿态。同时,介绍了坐标变换的不同类型,如平移和旋转变换,以及它们在齐次坐标系下的表示和组合应用。此外,讨论了变换顺序的重要性,即绕参考坐标系或构建坐标系变化时的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、机器人的相关概念

位置和姿态的描述: 位置和姿态是描述物体的两个重要特性。
位置描述:在笛卡尔坐标系中,空间中的任意一点P点位置可用3*1的列向量表示,^{A}P =\begin{bmatrix} X& Y& Z \end{bmatrix}^{T}

姿态描述:构建末端执行器的坐标系{B}的三个单位主矢量[X_{B},Y_{B},Z_{B}]相对于基坐标系{A}方向上的余弦组成3X3的矩阵描述。

 即末端执行器构建坐标系的x相对于基坐标系的x、y、z有方向上的余弦值构成一个列向量\begin{bmatrix} L &M &N \end{bmatrix}^{T}

末端执行器构建坐标系的y相对于基坐标系的x、y、z有方向上的余弦值构成一个列向量\begin{bmatrix} O & P & Q \end{bmatrix}^{T};

末端执行器构建坐标系的z相对于基坐标系的x、y、z有方向上的余弦值构成一个列向量\begin{bmatrix} R & S & T \end{bmatrix}^{T};他们组成一个3X3的矩阵:   \begin{bmatrix} L& M &N \\ O& P & Q\\ R& S & T \end{bmatrix}^{T}

 旋转矩阵:\begin{bmatrix} L& M &N \\ O& P & Q\\ R& S & T \end{bmatrix}^{T}

若坐标系B可由A坐标系,绕A坐标系某一坐标轴获得,则x、y、z三轴的旋转矩阵分别为:

 位姿描述:即位置和姿态。{B} = { _{B}^{A}P   ^{A}P_{B0}}

二、坐标变换

1、平移变换 

 ^{A}P = ^{B}P + ^{A}P_{Bo}

2、旋转变化 

^{A}P = _{B}^{A}R  *^{B}P 

_{A}^{B}R  =  _{B}^{A}R^{-1} = _{B}^{A}R^{T}

3、复合变化

 ^{A}P = _{B}^{A}R * ^{B}P  +  ^{A}P_{B0}

4、齐次变化

\begin{bmatrix} ^{A}P\\ 1 \end{bmatrix}  =    \begin{bmatrix} _{B}^{A}P& ^{A}P_{B0}\\ 0& 1 \end{bmatrix}\begin{bmatrix} ^{B}P\\ 1 \end{bmatrix}

\left\{\begin{matrix} ^{A}P = _{B}^{A}R +^{A}P_{B0} & \\ 1 = 0 &0 \end{matrix}\right.

^{A}P = _{B}^{A}T * ^{B}P

_{B}^{A}T = \begin{bmatrix} _{B}^{A}R & ^{A}P_{B0} \\ 0 & 1 \end{bmatrix}

(1)、平移齐次变化

        {A}分别沿{B}的x 、y 、z坐标系平移a 、b 、c距离的平移齐次变化矩阵。

Trans(a,b,c) = \begin{bmatrix} 1 & 0 &0 & a\\ 0 & 1 &0 &b \\ 0 & 0 &1 &c \\ 0 &0 &0 &1 \end{bmatrix}

(2)、旋转齐次坐标变换

        R(x , \theta)      R(y , \theta)      R(z , \theta

R(x,\theta ) = \begin{bmatrix} 1 & 0& 0 & 0\\ 0& \cos \theta & -\sin \theta & 0\\ 0 &\sin \theta & \cos \theta &0 \\ 0& 0&0 & 1 \end{bmatrix}

引入齐次变化后连续的变换矩阵的连乘形式,要先看绕哪一个坐标轴变换。

1、绕参考坐标系变化---往左写

如:绕参考坐标系的z轴旋转90度,再绕y轴旋转90度,最后再进行平移

Trans(x,y,z)* Rot(y,90度)  * Rot(z,90度)

2、绕构建坐标系变化---往右写

Rot(z,90度)* Rot(y,90度)* Trans(x,y,z)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

没入&浅出

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值