改进粒子群算法求解电力系统经济调度问题(Matlab实现)

本文介绍使用粒子群算法解决电力系统经济调度问题的方法,包括详细的Matlab代码实现过程和参数设置技巧。通过迭代寻优,实现了成本的有效降低。

 目录

1 相关知识点

2 Matlab完整代码实现 

3 结果及可视化

1 相关知识点

                                  这里写图片描述

这里总结一位博主的目录:梳理如下:

粒子群算法(带约束处理)——Python&Matlab实现

智能优化算法——粒子群算法(Matlab实现)

灰狼算法和粒子群算法比较(附完整Matlab代码)——可应用于电气期刊论文

粒子群算法求解电力系统环境经济调度+微电网调度(风、光、电动车、柴油机、主网)(Python代码实现)

改进的多目标差分进化算法在电力系统环境经济调度中的应用(Python代码实现)【电气期刊论文复现】

风电随机性动态经济调度模型(Python&Matlab代码)

多目标灰太狼算法求解环境经济调度问题(IEEE30)(Matlab实现)

多元宇宙算法求解电力系统多目标优化问题(Matlab实现)【电气期刊论文复现】

求解热电联产经济调度问题的改进遗传与粒子群算法

改进粒子群算法的配电网故障定位(Python&Matlab代码实现)

2 部分代码

知识点讲解完毕,下面就是Matlab代码:

clc;
clear;
close all;

%% 经济调度问题

extmodel=CreateModel();

CostFunction=@(x) MyCostExt(x,extmodel); % 成本函数(目标函数)

nVar=extmodel.nPlant;             % 发电机台数(决策变量的个数)

VarSize=[1 nVar];   % 决策变量矩阵的大小

VarMin=0;         % 变量下限
VarMax=1;         % 变量上限


%% 粒子群算法相关参数

MaxIt=100;      % 最大迭代次数

nPop=10;        % 总群数量

% w=1;            % 惯性权重
% wdamp=0.99;     % 惯性重量阻尼比
% c1=2;           % 个体学习系数
% c2=2;           % 种群学习系数

%% 约束系数
phi1=2.05;
phi2=2.05;
phi=phi1+phi2;
chi=2/(phi-2+sqrt(phi^2-4*phi));
w=chi;          % 惯性权重
wdamp=1;        % 惯性重量阻尼比
c1=chi*phi1;    % 个体学习系数
c2=chi*phi2;    % 种群学习系数

%% 飞行速度限制
VelMax=0.1*(VarMax-VarMin);
VelMin=-VelMax;

%% 初始化

empty_particle.Position=[];
empty_particle.Cost=[];
empty_particle.Out=[];
empty_particle.Velocity=[];
empty_particle.Best.Position=[];
empty_particle.Best.Cost=[];
empty_particle.Best.Out=[];

particle=repmat(empty_particle,nPop,1);

BestSol.Cost=inf;

for i=1:nPop
    
    %=====初始化粒子群位置===============
    particle(i).Position=unifrnd(VarMin,VarMax,VarSize);
    
    %=====初始化速度======
    particle(i).Velocity=zeros(VarSize);
    
    %=====目标函数计算===========
    [particle(i).Cost, particle(i).Out]=CostFunction(particle(i).Position);
    
    %====更新粒子个体最优=====
    particle(i).Best.Position=particle(i).Position;
    particle(i).Best.Cost=particle(i).Cost;
    particle(i).Best.Out=particle(i).Out;
    
    %====更新粒子群全局最优========
    if particle(i).Best.Cost<BestSol.Cost
        
        BestSol=particle(i).Best;
        
    end
    
end

BestCost=zeros(MaxIt,1);


%% PSO 主循环

for it=1:MaxIt
    
    for i=1:nPop
        
        %============更新速度(跟着公式写就可以啦)===============
        particle(i).Velocity = w*particle(i).Velocity ...
            +c1*rand(VarSize).*(particle(i).Best.Position-particle(i).Position) ...
            +c2*rand(VarSize).*(BestSol.Position-particle(i).Position);
        
        %============适用速度限制============
        particle(i).Velocity = max(particle(i).Velocity,VelMin);
        particle(i).Velocity = min(particle(i).Velocity,VelMax);
        
        %============更新位置================
        particle(i).Position = particle(i).Position + particle(i).Velocity;
        
        IsOutside=(particle(i).Position<VarMin | particle(i).Position>VarMax);
        particle(i).Velocity(IsOutside)=-particle(i).Velocity(IsOutside);
        
        %============适用位置限制============
        particle(i).Position = max(particle(i).Position,VarMin);
        particle(i).Position = min(particle(i).Position,VarMax);
        
        %============计算目标函数===========
        [particle(i).Cost, particle(i).Out] = CostFunction(particle(i).Position);
        
        %==========更新个体最优==========
        if particle(i).Cost<particle(i).Best.Cost
            
            particle(i).Best.Position=particle(i).Position;
            particle(i).Best.Cost=particle(i).Cost;
            particle(i).Best.Out=particle(i).Out;
            
            %=======更新全局最优============
            if particle(i).Best.Cost<BestSol.Cost
                
                BestSol=particle(i).Best;
                
            end
            
        end
        
    end
    
    BestCost(it)=BestSol.Cost;
    
    disp(['迭代次数' num2str(it) ': 最优解为 = ' num2str(BestCost(it))]);
    
    w=w*wdamp;
    
end

%% 结果

figure;
plot(BestCost,'LineWidth',2);
xlabel('迭代次数');
ylabel('最优解');

clc;
clear;
close all;

%% 经济调度问题

extmodel=CreateModel();

CostFunction=@(x) MyCostExt(x,extmodel); % 成本函数(目标函数)

nVar=extmodel.nPlant;             % 发电机台数(决策变量的个数)

VarSize=[1 nVar];   % 决策变量矩阵的大小

VarMin=0;         % 变量下限
VarMax=1;         % 变量上限


%% 粒子群算法相关参数

MaxIt=100;      % 最大迭代次数

nPop=10;        % 总群数量

% w=1;            % 惯性权重
% wdamp=0.99;     % 惯性重量阻尼比
% c1=2;           % 个体学习系数
% c2=2;           % 种群学习系数

%% 约束系数
phi1=2.05;
phi2=2.05;
phi=phi1+phi2;
chi=2/(phi-2+sqrt(phi^2-4*phi));
w=chi;          % 惯性权重
wdamp=1;        % 惯性重量阻尼比
c1=chi*phi1;    % 个体学习系数
c2=chi*phi2;    % 种群学习系数

%% 飞行速度限制
VelMax=0.1*(VarMax-VarMin);
VelMin=-VelMax;

%% 初始化

empty_particle.Position=[];
empty_particle.Cost=[];
empty_particle.Out=[];
empty_particle.Velocity=[];
empty_particle.Best.Position=[];
empty_particle.Best.Cost=[];
empty_particle.Best.Out=[];

particle=repmat(empty_particle,nPop,1);

BestSol.Cost=inf;

for i=1:nPop
    
    %=====初始化粒子群位置===============
    particle(i).Position=unifrnd(VarMin,VarMax,VarSize);
    
    %=====初始化速度======
    particle(i).Velocity=zeros(VarSize);
    
    %=====目标函数计算===========
    [particle(i).Cost, particle(i).Out]=CostFunction(particle(i).Position);
    
    %====更新粒子个体最优=====
    particle(i).Best.Position=particle(i).Position;
    particle(i).Best.Cost=particle(i).Cost;
    particle(i).Best.Out=particle(i).Out;
    
    %====更新粒子群全局最优========
    if particle(i).Best.Cost<BestSol.Cost
        
        BestSol=particle(i).Best;
        
    end
    
end

BestCost=zeros(MaxIt,1);


%% PSO 主循环

for it=1:MaxIt
    
    for i=1:nPop
        
        %============更新速度(跟着公式写就可以啦)===============
        particle(i).Velocity = w*particle(i).Velocity ...
            +c1*rand(VarSize).*(particle(i).Best.Position-particle(i).Position) ...
            +c2*rand(VarSize).*(BestSol.Position-particle(i).Position);
        
        %============适用速度限制============
        particle(i).Velocity = max(particle(i).Velocity,VelMin);
        particle(i).Velocity = min(particle(i).Velocity,VelMax);
        
        %============更新位置================
        particle(i).Position = particle(i).Position + particle(i).Velocity;
        
        IsOutside=(particle(i).Position<VarMin | particle(i).Position>VarMax);
        particle(i).Velocity(IsOutside)=-particle(i).Velocity(IsOutside);
        
        %============适用位置限制============
        particle(i).Position = max(particle(i).Position,VarMin);
        particle(i).Position = min(particle(i).Position,VarMax);
        
        %============计算目标函数===========
        [particle(i).Cost, particle(i).Out] = CostFunction(particle(i).Position);
        
        %==========更新个体最优==========
        if particle(i).Cost<particle(i).Best.Cost
            
            particle(i).Best.Position=particle(i).Position;
            particle(i).Best.Cost=particle(i).Cost;
            particle(i).Best.Out=particle(i).Out;
            
            %=======更新全局最优============
            if particle(i).Best.Cost<BestSol.Cost
                
                BestSol=particle(i).Best;
                
            end
            
        end
        
    end
    
    BestCost(it)=BestSol.Cost;
    
    disp(['迭代次数' num2str(it) ': 最优解为 = ' num2str(BestCost(it))]);
    
    w=w*wdamp;
    
end

%% 结果

figure;
plot(BestCost,'LineWidth',2);
xlabel('迭代次数');
ylabel('最优解');

完整代码:评论区回复关键字

3 结果及可视化

 

评论 8
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值