💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
本文用于设计包含圆柱磁化物体的系统。包含:
1. 计算具有任意和均匀磁化(例如,轴向和直径向磁化圆柱体作为特例)的圆柱和环形永磁体的磁场和磁场梯度,或者等效地计算轴向螺线管的磁场和磁场梯度。这些函数可用于计算永磁体圆柱对磁偶极子施加的扭矩和力(分别是场和场梯度)。
2. 计算具有轴向或直径向磁化的同轴永磁体圆柱之间的力和扭矩。
3. 磁场和磁场梯度的可视化函数。
注:实现的表达式基于均匀磁化的基本假设,这是对现代高级磁性材料(如SmCo、NdFeB或具有$\chi < 0.1$的铁氧体)制成的磁铁的一个极好的近似。与常见的数值方法(如有限元(FE)方法或直接数值积分)相比,主要优势在于快速计算时间,以微秒为量级,这使得高效的多变量参数空间分析和解决永磁体排列的全局优化问题成为可能。
- 目录 "00 它们可以计算轴向磁铁和环形磁铁的场。
- 目录 "01包含计算同轴圆柱体之间(具有相同磁化方向)的力和扭矩的函数。
- 目录 "04 -包含用于可视化具有任意磁化的圆柱形磁铁的场分量的函数。
- 目录 "05 - 是一个方便的文件夹,包含Elfun18库中用于特殊函数数值计算的有用函数。
- 目录 "11 - 包含仅使用矢量操作计算场和梯度的函数(用于加速)。
📚2 运行结果
部分代码:
%% Prepare MATLAB Workspace
% store current path location
currentPath = pwd;
% move to the father directory
cd ..
% add folders to path
addpath(genpath("01 - Permanent Magnet Cylinders and Rings"))
addpath(genpath("05 - Numerical Recipes"))
% move back to the test directory
cd(currentPath)
mu0 = 4*pi*1e-7; % (T m / A) vacuum permittivity
Br = 1.27; % (T) Remanence
M = Br/mu0; % (A/m) Magnetization N45
R = 0.02; % (m) magnet radius
L = 0.01; % (m) magnet semilength
%% Purely axial magnetization
Mvec = [1/sqrt(2); 0; 1/sqrt(2)]*M;
Npts = 100; % points per coordinate in the grid
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]周恩权,郑仲桥,张燕红,等.圆柱形永磁体磁场建模及仿真研究[J].河南科技, 2017(21):5.DOI:10.3969/j.issn.1003-5168.2017.21.054.
[2]励轲,陈立群.矩形永磁体磁场中压电悬臂梁的动力学建模[C]//第十四届全国非线性振动暨第十一届全国非线性动力学和运动稳定性学术会议.0[2024-04-15].DOI:ConferenceArticle/5af1a136c095d71bc8c8de6b.
[3]杨禄权,孙子阳,周志奇.基于永磁体磁场的数值计算与仿真分析研究[J].河北农机, 2021, 000(003):P.111-113.