基于BiLSTM-Adaboost的自行车租赁数量预测研究(Matlab代码实现)

             💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、模型构建

1. 数据预处理

2. BiLSTM模型构建

3. Adaboost集成学习

二、预测流程

三、优势与应用

1. 优势

2. 应用领域

四、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于BiLSTM-Adaboost的自行车租赁数量预测研究是一种结合了双向长短期记忆网络(BiLSTM)和Adaboost算法的时间序列预测方法。这种方法旨在利用BiLSTM的序列建模能力和Adaboost的集成学习能力,提高自行车租赁数量预测的准确性和稳定性。以下是对该研究的详细分析:

一、模型构建

1. 数据预处理
  • 数据来源:自行车租赁数据通常包括历史租赁数量、时间信息(如日期、小时)、天气情况(如温度、湿度、风速、天气状况等)、节假日信息以及可能的地理位置信息等。
  • 数据清洗:处理缺失值、异常值,确保数据的完整性和准确性。
  • 特征选择:根据业务需求和数据特点,选择对预测结果有重要影响的特征。
2. BiLSTM模型构建
  • BiLSTM原理:BiLSTM是一种循环神经网络(RNN)的变体,它通过引入前向和后向两个隐层来捕捉序列数据中的上下文信息。这种结构使得BiLSTM能够有效地处理时间序列数据中的长期依赖关系。
  • 模型训练:使用预处理后的数据训练BiLSTM模型,以学习时间序列数据的内在规律和模式。
3. Adaboost集成学习
  • Adaboost原理:Adaboost是一种集成学习方法,它通过迭代地训练多个弱分类器(在这里可以是基于BiLSTM的预测模型),并加权组合它们的预测结果,从而得到一个强分类器。Adaboost算法能够通过不断调整样本权重来关注错误分类的样本,从而提高整体的预测准确性。
  • 集成策略:将多个BiLSTM模型的预测结果作为弱分类器的输出,通过Adaboost算法进行加权组合,得到最终的预测结果。

二、预测流程

  1. 数据输入:将预处理后的数据输入到BiLSTM模型中。
  2. BiLSTM预测:BiLSTM模型对输入数据进行建模,并输出每个时间步的预测结果。
  3. Adaboost集成:使用Adaboost算法对BiLSTM模型的预测结果进行加权组合,得到最终的自行车租赁数量预测结果。

三、优势与应用

1. 优势
  • 高准确性:结合BiLSTM的序列建模能力和Adaboost的集成学习能力,可以提高预测的准确性和稳定性。
  • 灵活性强:能够适应不同时间尺度和不同影响因素下的自行车租赁数量预测。
  • 可解释性:虽然深度学习模型通常难以解释,但Adaboost算法可以通过观察不同弱分类器的权重来提供一定程度的可解释性。
2. 应用领域
  • 共享单车公司:帮助公司优化资源配置、提高运营效率。
  • 城市交通管理:为城市规划者和交通管理者提供决策支持,优化公共交通资源分配。
  • 学术研究:作为时间序列预测领域的一个研究案例,推动相关理论和技术的发展。

四、结论与展望

基于BiLSTM-Adaboost的自行车租赁数量预测研究展示了深度学习与集成学习相结合在时间序列预测中的强大潜力。未来研究可以进一步探索更多影响自行车租赁数量的因素,并尝试将其他先进的机器学习算法或深度学习技术应用于该领域,以不断提升预测精度和实用性。同时,也可以关注模型的可解释性和鲁棒性等问题,为实际应用提供更加可靠和稳定的解决方案。

📚2 运行结果

 

部分代码:

function [mae,rmse,mape,error]=calc_error(x1,x2)

error=x2-x1;  %计算误差
rmse=sqrt(mean(error.^2));
disp(['1.均方差(MSE):',num2str(mse(x1-x2))])
disp(['2.根均方差(RMSE):',num2str(rmse)])

 mae=mean(abs(error));
disp(['3.平均绝对误差(MAE):',num2str(mae)])

 mape=mean(abs(error)/x1);
 disp(['4.平均相对百分误差(MAPE):',num2str(mape*100),'%'])
Rsq1 = 1 - sum((x1 - x2).^2)/sum((x1 - mean(x2)).^2);
disp(['5.R2:',num2str(Rsq1*100),'%'])
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]李婷婷.城市公共自行车租赁点选址规划研究[D].北京交通大学,2010.DOI:10.7666/d.y1961114.

[2]陆朕.公共自行车租赁点车辆数的预测方法研究[D].南京师范大学,2015.DOI:10.7666/d.Y2857359.

[3]韩军红,魏越,侯礼兴.公共自行车租赁点规模优化[J].山西建筑, 2023, 49(22):57-61.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值