💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于GRU(门控循环单元)的共享单车租赁预测研究涉及利用GRU网络对时间序列数据进行建模和预测。GRU是一种改进的循环神经网络(RNN),它在处理长时间序列数据时比传统的RNN具有更好的性能。以下是这种研究的一些关键点:
1. **GRU概述**
GRU是一种简化的长短期记忆网络(LSTM),用于处理和预测时间序列数据。GRU通过门控机制来控制信息的流动,能够有效捕捉长期依赖关系。GRU的主要特点包括:
- **更新门**:控制当前信息与先前信息的更新比例。
- **重置门**:决定是否保留之前的记忆信息。
2. **研究步骤**
数据准备
- **数据收集**:获取包括共享单车租赁数量、时间、天气、节假日等信息的历史数据。
- **数据预处理**:处理缺失值、异常值,并对数据进行归一化处理。
模型构建
- **数据划分**:将数据分为训练集、验证集和测试集。
- **网络结构设计**:构建包含GRU层的神经网络,通常包括:
- 输入层:处理输入特征。
- GRU层:进行序列数据处理。
- 输出层:生成预测结果。
- **激活函数**:GRU内部使用的激活函数通常是Sigmoid和Tanh。
模型训练
- **训练过程**:使用训练数据训练GRU模型,通过调整网络参数来最小化预测误差。
- **优化算法**:常用的优化算法包括Adam、RMSprop等。
- **损失函数**:常用均方误差(MSE)来衡量预测误差。
模型评估
- **验证与测试**:使用验证集调整模型超参数,并用测试集评估最终模型的性能。
- **评估指标**:包括均方根误差(RMSE)、平均绝对误差(MAE)等。
3. **应用效果**
利用GRU进行共享单车租赁预测具有以下优势:
- **捕捉长期依赖**:GRU能够较好地捕捉时间序列中的长期依赖关系。
- **高效性**:相比LSTM,GRU的计算量较小,训练速度更快。
- **预测准确性**:在具有明显时间序列特征的数据集上,GRU能够提供较为准确的预测结果。
4. **挑战与改进**
- **数据质量**:高质量的数据对模型预测精度至关重要,需要处理好数据中的噪声和异常值。
- **超参数调优**:选择合适的超参数(如GRU层数、隐藏单元数等)对模型性能有重要影响。
- **实时性**:在实际应用中,需要保证模型的实时性和计算效率。
5. **未来方向**
- **混合模型**:可以尝试将GRU与其他模型(如CNN、注意力机制)结合,以进一步提高预测性能。
- **更多特征**:引入更多影响租赁需求的特征(如交通流量、用户行为数据等)可能有助于提升预测效果。
📚2 运行结果
部分代码:
def evaluate_forecasts(Ytest, predicted_data, n_out): # 定义一个函数来评估预测的性能。 mse_dic = [] rmse_dic = [] mae_dic = [] mape_dic = [] r2_dic = [] # 初始化存储各个评估指标的字典。 table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2']) for i in range(n_out): # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标 actual = [float(row[i]) for row in Ytest] #一列列提取 # 从测试集中提取实际值。 predicted = [float(row[i]) for row in predicted_data] # 从预测结果中提取预测值。 mse = mean_squared_error(actual, predicted) # 计算均方误差(MSE)。 mse_dic.append(mse) rmse = sqrt(mean_squared_error(actual, predicted)) # 计算均方根误差(RMSE)。 rmse_dic.append(rmse) mae = mean_absolute_error(actual, predicted) # 计算平均绝对误差(MAE)。 mae_dic.append(mae) MApe = mape(actual, predicted) # 计算平均绝对百分比误差(MAPE)。 mape_dic.append(MApe) r2 = r2_score(actual, predicted) # 计算R平方值(R2)。 r2_dic.append(r2) if n_out == 1: strr = '预测结果指标:' else: strr = '第'+ str(i + 1)+'步预测结果指标:' table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]陈鑫,刘琦.基于时间序列分析的共享单车未来格局预测[J].现代营销(下旬刊), 2017(10):216-216.DOI:10.3969/j.issn.1009-2994.2017.10.174.
[2]焦志伦,金红,刘秉镰,等.大数据驱动下的共享单车短期需求预测——基于机器学习模型的比较分析[J].商业经济与管理, 2018(8):11.DOI:10.14134/j.cnki.cn33-1336/f.2018.08.002.
[3]甘明.基于深度学习的共享单车预测与调度研究[D].杭州电子科技大学,2022.
[4]靳海红,张帅.基于数据分析的共享单车模式与前景研究[J].商情, 2019.
🌈4 Python代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取