transformer with mot

encoder的意义在于:全局特征 可以知道这个物体在图中的位置

decoder的意义在于 :移除冗余框 互相通信之后,知道每个query可能得到什么样的一个框 不要去做重复的框

BOT-SORT性能

在这里插入图片描述

TransTrack(20.12)------TrackFormer(21.1)-----TransCenter(21.3)-----TransMOT(21.4)-----MOTR(21.5) 

前三篇是2021 cvpr  分类:大体上分三类 TransMOT单独一类,因为它用的是graph transformer。TransCenter也是单独一类,因为其用的是中心点(学习热度图),而不是bbox。

cvpr2022有两篇 Unified Transformer Tracker for Object Tracking

Global Tracking Transformers

先重点学习一下 TransTrack(20.12)------TrackFormer(21.1)

TransTrack解读

TransTrack解读_周先森爱吃素的博客-CSDN博客_transtrack

TBD的问题:一方面,这种两个任务分开进行会造成它们不能共享有效的信息带来额外的算力消耗;另一方面,连续两帧间的无序目标对和每帧中不完整的检测都为跟踪算法带来了极大的挑战。

Deformable DETR_weixin_43981952的博客-CSDN博客_deformable detr传统的 attention module 的每个 Query 都会和所有的 Key 做attention,而 Deformable Attention Module 只使用固定的一小部分 Key 与 Query 去做attention,所以收敛时间会缩短。

### 使用Transformer实现目标检测与跟踪的方法及应用 #### Transformer在目标检测中的角色和发展趋势 Transformer架构已经在多种计算机视觉任务中展现出卓越的表现,特别是在目标检测方面。这种模型不仅能够捕捉输入图像内的长期依赖关系,还能够在不同尺度上有效地表示特征[^1]。 #### 多目标跟踪的时间建模挑战及其解决方案 对于多目标跟踪(MOT),主要的技术难点在于如何有效处理随时间变化的目标状态。传统基于规则的方法难以应对复杂的场景变换,比如当物体被部分或完全遮挡时的情况。引入Transformer机制可以显著改善这一状况,因为该结构具备强大的序列理解和上下文感知能力,从而更好地支持跨帧间的一致性和连续性估计[^2]。 #### 实现细节和技术要点 为了具体说明如何利用Transformer来完成上述两项核心功能——即静态条件下的对象定位以及动态环境里的持续监测——这里提供了一个简化版的工作流程概述: - **数据预处理**:准备高质量的数据集至关重要;这包括但不限于标注精确的对象位置信息、定义清晰的任务需求等。 - **网络设计**:构建适合特定应用场景的神经网络框架。例如,在提到的一个实例中,“RT-DETR”项目就针对实时性能进行了优化调整,并提供了详细的参数设置指南用于自定义配置文件编辑[^3]。 - **损失函数的选择**:考虑到实际操作过程中可能出现的各种误差模式(如过预测),合理选择并微调损失计算公式有助于提升整体系统的鲁棒性和准确性。一些研究指出,像CBNetV2这样的改进型方案可以在保持高效的同时减少误报率[^4]。 ```python import torch from transformers import DetrForObjectDetection, DetrImageProcessor processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") def detect_objects(image_path): image = Image.open(image_path) inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) target_sizes = torch.tensor([image.size[::-1]]) results = processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[0] for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): print(f"Detected {model.config.id2label[label.item()]} with confidence {score:.3f} at location {box.tolist()}") detect_objects('example.jpg') ``` 此代码片段展示了一个基本的例子,其中使用了预先训练好的DETR模型来进行图片内物品的识别工作。当然,根据不同业务的具体情况还可以进一步定制化开发更专业的版本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值