空间转录组学数据分析软件包和算法的比较分析

本文对比分析了多种空间转录组数据分析软件包和算法,包括SpatialDE、SPARK、Trendsceek、BOOST-GP、SOMDE等,涵盖了SVG识别、细胞类型识别、聚类和数据重建等多个方面,帮助研究者在实际分析中做出选择。
摘要由CSDN通过智能技术生成

关注我们👉 时空组/空间组学专辑的同学一定知道此前小编已经分享过很多空间转录组的分析工具,不过这么多工具,我们在做实际分析的时候要怎么选呢? 

空间转录组数据分析软件包和算法的比较分析

识别空间可变基因(SVG)

SpatialDE

方法:高斯过程回归

执行:Python

优点:目前该类别中最受欢迎的package

缺点:将表达量很低的基因标记为SVG,并进行两个归一化步骤

GitHub:https://github.com/Teichlab/ SpatialDE

SPARK

方法:广义线性空间模型

执行:R

优点:不需要对数据进行归一化处理,并对type I error进行控制

缺点:与SpatialDE相比,准确性没有显著提高

GitHub:https://github.com/xzhoulab/ SPARK

Trendsceek

方法:标记点过程法

执行:R

优点:报告的假阳性率低

缺点:识别的SVG数量非常少,对较大的数据集没有效果

Gi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值