关注我们👉 时空组/空间组学专辑的同学一定知道此前小编已经分享过很多空间转录组的分析工具,不过这么多工具,我们在做实际分析的时候要怎么选呢?
空间转录组数据分析软件包和算法的比较分析
识别空间可变基因(SVG)
SpatialDE
方法:高斯过程回归
执行:Python
优点:目前该类别中最受欢迎的package
缺点:将表达量很低的基因标记为SVG,并进行两个归一化步骤
GitHub:https://github.com/Teichlab/ SpatialDE
SPARK
方法:广义线性空间模型
执行:R
优点:不需要对数据进行归一化处理,并对type I error进行控制
缺点:与SpatialDE相比,准确性没有显著提高
GitHub:https://github.com/xzhoulab/ SPARK
Trendsceek
方法:标记点过程法
执行:R
优点:报告的假阳性率低
缺点:识别的SVG数量非常少,对较大的数据集没有效果
Gi