状态反馈的特征值配置问题

状态反馈的特征值配置问题


考虑有状态空间方程:

\dot{x}(t)=Ax(t)+Bu(t)

y(t)=Cx(t)

假设该状态空间方程为4维,求其状态反馈增益k,使其具有特征值\lambda _{1},\lambda _{2}

条件:原状态空间方程能控。


方法一:

引入状态反馈后新的A阵为:

\bar{A}=A-Bk

由新的A阵得出特征多项式,再写出期望特征值多项式,利用待定系数法,可求得k

注:方法一不要求原状态空间方程能控。


方法二:

STEP1:求特征多项式\Delta (\lambda )

\Delta (s )=s^{4}+\alpha _{1}s^{3}+\alpha _{2}s^{2}+\alpha _{3}s+\alpha _{4}

STEP2:求P阵

P^{-1}=\begin{bmatrix} B &AB & A^{2}B &A^{3} B \end{bmatrix}\begin{bmatrix} 1 & \alpha _{1}& \alpha _{2}&\alpha _{3} \\ 0& 1 &\alpha _{1} & \alpha _{2}\\ 0& 0 &1 &\alpha _{1} \\ 0& 0 &0 &1 \end{bmatrix}

STEP3:求期望特征值多项式\Delta _{f}(s)

\Delta _{f}(s)=s^{4}+\bar{\alpha }_{1}s^{3}+\bar{\alpha }_{2}s^{2}+\bar{\alpha }_{3}s+\bar{\alpha }_{4}

STEP4:求\bar{k}

\bar{k}=\begin{bmatrix} \bar{\alpha }_{1}-\alpha _{1} & \bar{\alpha }_{2}-\alpha _{2} & \bar{\alpha }_{3}-\alpha _{3} & \bar{\alpha }_{4}-\alpha _{4} \end{bmatrix}

STEP5:求状态反馈增益k

k=\bar{k}P


方法三:求解Lyapunov方程

条件:期望特征值不能为原A阵的任意特征值。

STEP1:求期望特征多项式\Delta _{f}(s)

\Delta _{f}(s)=(s-\lambda _{1})(s-\lambda _{2})=s^{4}+{\alpha }_{1}s^{3}+{\alpha }_{2}s^{2}+{\alpha }_{3}s+{\alpha }_{4}

STEP2:选择具有期望特征值的nXn矩阵F

F=\begin{bmatrix} -\alpha _{1} & 1&0 &0 \\ -\alpha _{2}& 0 &1 &0 \\ -\alpha _{3}& 0&0 &1 \\ -\alpha _{4}& 0&0 &0 \end{bmatrix}

STEP3:任意选择1Xn的向量\bar{k},使得(F,\bar{k})能观

若选择上述形式的F阵,则\bar{k}一般可选择为:

\bar{k}=\begin{bmatrix} 1 &0 &\cdots & 0 \end{bmatrix}

STEP4:求Lyapunov方程AT-TF=B\bar{k}的唯一解T

STEP5:计算状态反馈增益k=\bar{k}T^{-1}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值