深度学习研究理解11:Going deeper with convolutions

本文是Google公司的Christian Szegedy等大牛们于2014年提出的“深深”的网络,其中提出了很多新颖的结构和想法;并在ILSVRC2014中,获得了分类和检测第一的好成绩。

摘要:

本文提出了一个新深度网络的“结构”,命名为inception(开端之意,个人命名为起航);这个结构可以充分利用网络中“计算资源”(充分开发和利用每层提取的特征);在保证固定计算复杂度前提下,通过人工的进行设计来允许增加网络的深度和宽度实现的。结构是基于Hebbian准则和multi-scale处理来优化其性质的。

我们可以假定,反射活动的持续与重复会导致神经元稳定性的持久性提升……当神经元A的轴突与神经元B很近并参与了对B的重复持续的兴奋时,这两个神经元或其中一个便会发生某些生长过程或代谢变化,致使A作为能使B兴奋的细胞之一,它的效能增强了。这一理论经常会被总结为“一起发射的神经元连在一起”(Cells that fire together, wiretogether)。这可以用于解释“联合学习”(associative learning),在这种学习中通过对神经元的刺激使得神经元间的突触强度增加。这样的学习方法被称为赫布型学习(Hebbian learning)。 (百度百科)

海扁学习法专业描述。我们来重新专业地描述一下。如果两个神经元常常同时产生动作电位,或者说同时激动(fire),这两个神经元之间的连接就会变强,反之则变弱。(http://blog.sina.com.cn/s/blog_569d6df80100wug8.html

一:介绍

近年来在图像识别和物体检测领域的进步,除了强悍的硬件,大的数据集,大的模型外,还有新想法,算法和改进的网络结构的功劳。GoogLeNet比Alex-net少12倍的参数而且更加准确。在物体检测领域,最大的贡献来源于深度网络和经典的计算机视觉算法的融合,例如RNN,感觉SPP也是。

本文不光追求推进网络的识别率,算法的效率和内存也是本文的关注点;所以本文所有网络的设计,保证在测试阶段在15亿乘-加指令以内

本文关注于一个对于CV来说高效的深度网络结构-inception。本文的深度有两次意思:

1,以inception模块的形式提出了一种新的深度组织形式

2,直接增加层数的意思

一般来说,可以把inception看成是Network inNetwork的“逻辑顶点”;从“Provable bounds for learning deep representation”的理论研究中获得灵感和指导。

二,相关工作

受到灵长类神经视觉系统的启发,Serre使用不同尺寸的Gabor滤波器来处理不同尺寸的图片,这个和inception很相似。

Network-inNetwork是为了增加网络表达能力提出的深度网络。当应用到卷积网络,其可以被看做是1*1的卷积层,后面跟着ReLU函数。本文的网络大量应用这种结构,然而在我们的网络中这种结构有双重作用:主要用于维数约减模块来移除计算瓶颈,否则这个瓶颈会限制我们网络的大小。这样不仅允许我们增加深度,而且允许我们增加宽度。

当前最流行的检测算法就是Girshick提出的Regions-CNN;R-CNN把检测任务分解为两个子任务:1利用“底层的”线索(颜色或者像素的一致性)提取潜在的物体。2使用CNN来分类潜在的物体。我们进一步改进了其算法,例如multi-box预测等。

三 动机和高级的考量

在大量的带标签的数据集前提下,提升深度网络性能最简单的方式就是增加网络的size;包括增加深度和宽度。这种方法有两个瓶颈:

1,大的网络需要更多的参数,较多的参数在固定的数据集下,容易造成网络过拟合。高质量的大数据集是非常昂贵的。

2,大的网络需要更多的计算资源。例如连个相互连接的卷积网络,一致的增加网络的卷积数目,导致计算量二阶增涨。此外,如果额外增加的网络没有得到有效的利用(很多权值接近0),会造成计算资源浪费。

本文认为解决上了两个问题最基本的方式是:从全连接转到稀疏

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值