wishchinYang的专栏

生死去留,蓬头傀儡;一时线断,落落磊磊!不创造知识,只是知识的搬运工!...

三维重建PCL:点云单侧面正射投影

        终于把点云单侧面投影正射投影的代码写完了,为一个阶段,主要使用平面插值方法,且只以XOY平面作为的正射投影面。有些凑合的地方,待改进。        方法思路:使用Mesh模型,对每一个表面进行表面重建。借助OpenCV Mat类型对投影平面进行内点判断,对内点位置进行插值。   ...

2018-03-22 15:02:03

阅读数:107

评论数:0

三维重建6:绑架问题/SensorFusion/IMU+CV-小尺度SLAM

机器人的“绑架”问题是指在缺少它之前的位置信息情况下,去确定机器人的当前位姿,例如当机器人被安置在一个已经构建好地图的环境中,但是并不知道它在地图中的相对位置,或者在移动过程中,由于传感器的暂时性功能故障或相机的快速移动,都导致机器人先前的位置信息的丢失,就像人质的眼睛被蒙上黑布条,拉上集装箱被运...

2017-06-20 14:10:28

阅读数:3154

评论数:0

三维重建5:场景中语义分析/语义SLAM/DCNN-大尺度SLAM

在实时/非实时大规模三维场景重建中,引入了语义SLAM这个概念,参考三维重建:SLAM的尺度和方法论问题 和三维重建:SLAM的粒度和工程化问题 。大规模三维场景重建的尺度增大,因此相对于整个重建过程的粒度也从点到特征点到目标物体级别,对场景进行语义标记成为重要的工作。

2017-06-20 10:50:07

阅读数:3412

评论数:0

三维重建:SLAM的尺度和方法论问题

在计算机视觉中, 三维重建是指根据单视图或者多视图的图像重建三维信息的过程. 由于单视频的信息不完全,因此三维重建需要利用经验知识.。而多视图的三维重建(类似人的双目定位)相对比较容易, 其方法是先对摄像机进行标定, 即计算出摄像机的图象坐标系与世界坐标系的关系.然后利用多个二维图象中的信息重建出...

2016-05-18 19:19:25

阅读数:4360

评论数:3

三维重建:SLAM的粒度和工程化问题

三维重建根据时间和场景的粒度不同需要引入不同的工程化方法:1.像素级别重建,也称为稠密重建;2.特征点级别重建,也称为稀疏重建;3.环境重建,被称为目标级别重建。

2016-05-18 19:08:44

阅读数:2506

评论数:1

图像描述:各种维度图像的逻辑描述形式

在图像分析处理领域,图像的逻辑描述形式是计算机处理图像的基础,逻辑形式在 逻辑层面 描述出:图像到底是什么?          在几何数学中,空间作为集合的存在形式,根据不同的约束可以划分为不同的空间。具有拓扑结构的集合构成拓扑空间,局部可度量且正交的拓扑空间为流形,全部可度量的(只用一个坐标系即...

2015-11-18 11:08:21

阅读数:1569

评论数:0

SLAM: 单目视觉SLAM的方案分类《机器人手册》

摘抄知乎上一段有趣的话:     如果你出门问别人『学习SLAM需要哪些基础?』之类的问题,一定会有很热心的大哥大姐过来摸摸你的头,肩或者腰(不重要),一脸神秘地从怀里拿出一本比馒头还厚的《Multiple View Geometry》或《State Estimation For R...

2015-10-26 15:20:40

阅读数:4332

评论数:0

Python:Matplotlib 画曲线和柱状图(Code)

这是我关于pose识别率的实验结果,感觉结果真是令人不可思议!(非博主原文!) 原文链接:http://blog.csdn.net/ikerpeng/article/details/20523679 有少量修改,如有疑问,请访问原作者

2014-05-03 15:39:04

阅读数:33135

评论数:0

基于视觉的机械手控制

基于手眼协同的机器人控制系统:没有一个是不能解决的,但这样做会将我们领上一条非常复杂的道路。结果是一台很重、很大的机器人,它反过来又要求有强有力的驱动器来移动它,以及高质量的传感器和一个复杂的控制器——所有这些都推高了机器人的总成本。然而,除非万不得已.......................

2018-05-10 10:57:03

阅读数:39

评论数:0

StyleAI厚积薄发: Android网络图片数据传输

        在StyleAI上厚积了这么长时间,憋了这么久,本来想憋个更大的,不过还是薄发一次的好。三、直接使用别人的工程文章:Android学习之客户端上传图片到服务器下载地址:https://download.csdn.net/download/wlj142/7594879可以运行二、在E...

2018-03-28 16:57:14

阅读数:38

评论数:0

三维CNN:收集一些最近的三维卷积网络

        PointNet++是在PointNet上做出了改进,考虑了点云局部特征提取,从而更好地进行点云分类和分割。 先简要说一下PointNet: PointNet,其本质就是一种网络结构,按一定的规则输入点云数据,经过一层层地计算,得出分类结果或者分割结果。...

2018-03-22 18:04:48

阅读数:350

评论数:0

点云插值:三维平面参数确定-不共线三点的平面方程

  参考链接:三维空间中的平面方程                 这个链接是错误的: http://blog.csdn.net/PengPengBlog/article/details/52774421      //获取平面方程//Ax + By + Cz + D std::vector&a...

2018-03-22 11:10:55

阅读数:55

评论数:0

三维重建面试13:点云的局部特征总结

三维场景中物体检测也可以使用特征点方法+词包方法的通用框架。其中BOW方法是无差别的,特征点方法与二维图像不同的是点云的数据格式问题,一般表示为对点云曲面进行特征提取。可以使用基于八叉树的方法进行特征点提取,也可以使用深度Map图的方法或有序点云方法进行特征点提取。            注意事项...

2017-08-19 23:20:38

阅读数:1746

评论数:0

三维重建面试15:动态相机参数标定

对单个相机进行标定,一般使用标定法:相机标定-解决多点透视问题 。对空间中多点进行采样,得到相机的外参矩阵。如果想得到更准确的相机外参,建议在空间的不同位置,进行多次空间采样,进行分批次的相机标定,得到视野各处的相机外参。

2017-08-02 19:35:20

阅读数:1664

评论数:0

三维重建面试12:室内三维物体的位姿识别论文列表

四年前的论文列表拿出来,用来怀念一下。 在三维目标位姿识别的通路搭建过程中,使用到了下面列举的论文,其他使用到的方法相关性不是特别强,因此暂时没有列举出来。其中,有些论文没卵用,只是用来灌水的,看一下即可,不用深究。

2017-07-04 01:48:06

阅读数:1833

评论数:0

三维重建面试11:点云的全局特征总结

点云的检测和分类一般使用全局特征,传统的检测方法严重依赖于点云的场景分割,所幸的是点云的分割一般情况下比二维灰度图像和彩色图像更容易进行。基于分割方法的好处是,一旦目标被正确分割,点云分类即可以转换为较为简单的有遮挡或无遮挡的点云(位姿)识别。此时的分类,即点云识别可以使用Alignment的方法...

2017-07-04 01:46:34

阅读数:2154

评论数:0

三维重建面试10:点云配准和点云匹配

点云的匹配一般使用ICP方法( ICP:Iterative Closest Point迭代最近点),即两个点云纯粹通过刚体位姿变换即可大致重合。 若找稠密/稀疏点的匹配关系,ICP算法即简化成一个最小二乘问题,可以通过解方程的方法得到解析解,使用优化方式求解则可以得到全局最优解。...

2017-07-04 00:10:29

阅读数:2432

评论数:0

三维重建面试9:点云图像的滤波方法小结

PCL常规滤波手段均进行了很好的封装。对点云的滤波通过调用各个滤波器对象来完成。主要的滤波器有直通滤波器,体素格滤波器,统计滤波器,半径滤波器 等。不同特性的滤波器构成了较为完整的点云前处理族,并组合使用完成任务。实际上,滤波手段的选择和采集方式是密不可分的。

2017-07-03 23:21:22

阅读数:1837

评论数:0

三维重建面试8:点云图像的滤波方法

点云数据是三维空间的离散数据,不是类似于PLY格式的点线概念,因此可以使用所谓的“滤波方法”。点云数据若非看成深度map数据,则不再适用于使用二维图形的核卷积方法。此外,滤波方法与点云存储格式密切相关,点云存储格式一般为八叉树,而2.5D图像存储格式可以用深度Map形式,对应了不同的滤波方式。 ...

2017-07-03 00:01:05

阅读数:2374

评论数:0

三维重建面试7:Visual SLAM算法笔记

此文是一个好的视觉SLAM综述,对视觉SLAM总结比较全面,是SLAM那本书的很好的补充。介绍了基于滤波器的方法、基于前后端的方法、且介绍了几个SensorFusion方法,总结比较全面。

2017-06-20 19:53:57

阅读数:3301

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭