wishchinYang的专栏

生死去留,蓬头傀儡;一时线断,落落磊磊!不创造知识,只是知识的搬运工!...

CNN结构:HSV中的饱和度解析

为了细致的研究色彩明暗对比,可以把黑、灰、白划分为11个色阶。靠近白的3阶为高调色,靠近黑的三阶为低调色,中间三阶为中调色。

2018-02-28 10:52:14

阅读数:119

评论数:0

CV:深入浅出的讲解傅里叶变换(真正的通俗易懂)

这是一篇很NB的文章,图文并茂...............      另外这个回答比较好:能不能通俗地讲解傅里叶和小波分析的关系? 第二个妹子头像的回答      原文出处: 韩昊    1 2 3 4 5 6 7 8 9 10 作者:韩昊 知 乎:Heinrich ...

2018-02-04 15:02:36

阅读数:156

评论数:0

CNN结构:图片风格分类效果已成(StyleAI)

CNN结构:图片风格分类效果已成。可以在色彩空间对图片风格进行分类,并进行目标分类。 StyleAI构架:FasterRCnn + RandomTrees。

2017-12-29 15:21:17

阅读数:172

评论数:0

ProE复杂曲线方程:Python Matplotlib 版本代码(L系统,吸引子和分形)

对生长自动机的研究由来已久,并在计算机科学等众多学科中,使用元胞自动机的概念,用于生长模拟。而复杂花纹的生成,则可以通过重写一定的生长规则,使用生成式来模拟自然纹理。当然,很多纹理是由人本身设计的,其形成过程本身就是在人脑中进行“原胞生成”的过程。

2017-12-28 10:00:10

阅读数:399

评论数:0

CNN结构基元:纹理结构和纹理基元方程化(GLOH、Gabor...)

模式识别专注于寻找相同模式的共性和不同模式的分离。CNN把特征提取全局化,其中重要的一个是纹理特征,利用卷积核来表示纹理基元,用以重现模式,应如何显示表示。 纹理模式分析CNN化的可行性分析:纹理基于子对象模式,纹理从直觉上即可分解为基元的基元,即分层化。纹理模式识别,模型构建方法即为寻找纹理模式...

2017-12-26 11:02:28

阅读数:1171

评论数:0

搜藏一个较全的数据集目录

这个页面比较详细:http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm 此外cvpapers的页面一直更新:http://www.cvpapers.com/datasets.html 室内RGB_D场景分割:...

2017-12-13 10:47:56

阅读数:421

评论数:0

OpenCV3 Java 机器学习使用方法汇总

按道理来说,C++版本的OpenCV训练的版本XML文件,在java中可以无缝使用。但要注意OpenCV本身的版本问题。从2.4 到3.x版本出现了很大的改变,XML文件本身的存储格式本身也不同,不能通用。 opencv提供了非常多的机器学习算法用于研究。这里对这些算法进行分类学习和研究,以抛砖...

2017-12-12 09:24:26

阅读数:594

评论数:3

OpenCV:Python3使用OpenCV

另一种方法:直接下载 opencv_python‑3.3.1‑cp35‑cp35m‑win_amd64.whl 文件,下载到本地,使用pip 安装。 命令: pip install opencv_python-3.3.1-cp35-cp35m-win_amd64.whl

2017-11-12 18:14:02

阅读数:898

评论数:0

OpenCV: Kmeans的使用一维和二维点集

OpenCVKmeans算法默认使用了Kmeans++选取种子点 参考:OpenCv中Kmeans算法实现和使用 //效果:根据半径聚类,并不一定能得到好的结果。

2017-08-19 23:28:13

阅读数:394

评论数:0

Haar、pico、npd、dlib等多种人脸检测特征及算法结果比较

Pico(Pixel Intensity Comparison-based Object detection)发表于2014年,不同于VJ的Haar特征,pico则是提取点对特征,对两个像素点进行对比。实验表明这种特征比Haar特征更为有效,且运算时间更短。但是点对提取意味着PICO的抗噪性能极差...

2017-05-04 11:44:33

阅读数:2811

评论数:2

OpenCV: OpenCV人脸检测框可信度排序

使用OpenCV进行人脸识别时,使用 casecade.detectMultiScale 函数,可输出每个检测框的置信度

2017-04-18 16:48:04

阅读数:1025

评论数:0

OpenCV:Adaboost训练时数据扩增

更准确的模型需要更多的数据,对于传统非神经网络机器学习方法,不同的特征需要有各自相符合的数据扩增方法。

2017-04-06 10:12:56

阅读数:544

评论数:0

图像局部显著性—点特征(SiftGPU)

SIFT的计算复杂度较高。 SiftGpu的主页:SiftGPU: A GPU Implementation of ScaleInvariant Feature Transform (SIFT)

2017-03-27 17:04:48

阅读数:873

评论数:0

OpenCV:OpenCV目标检测Boost方法训练

AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,由Yoav Freund和Robert Schapire在1995年(Adaboost原理与推导)提出。它的自适应在于:前一个基本分类器分错的样本会得到加强,加权后的全体样本再次被用来训练下一个...

2017-03-22 13:05:19

阅读数:827

评论数:0

OpenCV:OpenCV目标检测Hog+SWindow源代码分析

HOG检测计算大致的函数调用堆栈。

2017-03-21 16:50:26

阅读数:570

评论数:0

OpenCV:OpenCV目标检测Adaboost+haar源代码分析

Haar+Adaboost检测计算大致的函数调用堆栈。

2017-03-21 15:44:44

阅读数:1477

评论数:0

OpenCV:OpenCV中的 parallel_for 和opencv parallel_for_

OpenCV使用OMP完成并行运算,在使用AdaBoost检测的时候,在cascadedetect.cpp 里面,大量使用 parallel_for_(Range(0, stripCount), CascadeClassifierInvoker( *this, processingRectSize...

2017-03-21 10:20:03

阅读数:1647

评论数:0

nvcc fatal : Unsupported gpu architecture 'compute_11'

使用VS编译OpenCV编译源代码时候,对Cmake生成的工程文件编译,会出现 nvcc fatal : Unsupported gpu architecture 'compute_11' 问题。原因是CUDA7.5不支持较为古老的显卡版本,因此1.1,2.0,2.1,之类的显卡选项是多余的。

2017-03-20 16:44:31

阅读数:3218

评论数:0

图像局部显著性—点特征(Fast)

Edward Rosten和Tom Drummond两位大神经过研究,于2006年在《Machine learning for high-speed corner detection》中提出了一种FAST特征点,并在2010年稍作修改后发表了《Features From Accelerated S...

2017-03-16 16:58:02

阅读数:716

评论数:0

图像的全局特征--HOG特征、DPM特征

       HOG特征:方向梯度直方图(Histogram of Oriented Gradient,)特征是一种全局图像特征描述子。       它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要...

2017-03-16 15:31:42

阅读数:1521

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭