Humanoid
文章平均质量分 61
wishchin
CV算法工程师:从事室内场景感知方面工作,完成算法实验和软件开发。
展开
-
人工机器:机器人模块化和双足机器人被动行走
Kinect+Unity实现虚拟人物动作同步声明:此文乃本人原创,未经本人允许不得转载。联系本人:网易邮箱geekyutao@163.com。0 简述任务:将人的动作实时同步到自建的虚拟人物上。实现原理简介:用Kinect实时捕捉人的动作,将捕捉到的信息实时传给Unity,Unity将获得的数据处理加工赋给Unity demo中建好的虚拟人物上,从而实现将人的动作实时同步到虚拟人物上。1 准备所需硬件:...原创 2021-01-26 16:39:14 · 696 阅读 · 0 评论 -
三维重建:重定位问题
Agent/机器人/相机-重定位问题-位姿重定位问题机器人绑架问题 初始化问题,匹配问题,位姿优化问题1. 位置重定位 天定位--GPS/室内基站 感知定位--基于图像方法2.姿态重定位 天定位--GPS/室内基站 感知定位--基于图像方法...原创 2020-11-27 12:11:08 · 626 阅读 · 0 评论 -
人脸Pose检测:ASM、AAM、CLM方法总结
一不小心听懂了ASM、AAM、CLM算法,还是记录下来。人脸的Pose检测需要一个 SolvePNP 的过程,对于固定三维点集模型,找出二维点集对应的位姿。此外,在track时使用点集寻找一个最优的位姿起始,应该给出一个好的起始点。原创 2016-06-01 11:55:08 · 20804 阅读 · 22 评论 -
三维重建:PNG格式详解-与LibPNG使用
PNG格式详解:https://blog.mythsman.com/post/5d2d62b4a2005d74040ef7eb/LibPNG的使用:https://blog.csdn.net/dreamInTheWorld/article/details/55805901一.PNG格式详解概述PNG是20世纪90年代中期开始开发的图像文件存储格式,其目的是替代GIF和TIFF文件格式,同时增加一些GIF文件格式所不具备的特性。流式网络图形格式(Portable Network Graphic转载 2020-08-22 10:40:21 · 2529 阅读 · 1 评论 -
错误: 找不到符号 符号: 类 Fill 位置: 类 Zeros<T> 其中, T是类型变量: T扩展已在类 Zeros中声明的Object
参考:https://blog.csdn.net/lqs411327/article/details/90714883方法:打开build.gradle,找到def nativeBuildSystem = 'bazel',将其改为def nativeBuildSystem = 'none'原创 2020-07-17 10:15:38 · 1416 阅读 · 0 评论 -
人工机器:jetsonnano推理时出现 Segmentation fault(core dumped)
前期配置:tensorrt+tensorflow+object_detection编译安装填坑教程!!1.在使用此工程:https://github.com/dusty-nv/jetson-inference 进行目标检测时,Deubg时不能import trt.inference,在console端运行出现Segmentation fault(core dumped)错误:原因: 找不...原创 2019-10-14 16:26:16 · 1669 阅读 · 0 评论 -
AI:忧郁的机器人
1、塔奇克马2、机器人瓦力3.马文http://www.guokr.com/post/683881/原创 2016-06-06 13:29:54 · 883 阅读 · 0 评论 -
AI:AI是什么?
古老的哲学对科学有永远的借鉴意义,科学上的咬文嚼字往往会让其丧失完备性。 你看起来它有多好,它就有多好。本质只能通过表象来描述,在色即是空的逻辑里,图灵测试也许是最精准的AI测试方式。有多少人工就有多少智能。原创 2016-05-31 13:59:42 · 1158 阅读 · 0 评论 -
AI:恐怖谷理论的陷阱
科学人的小品:恐怖谷:娃娃为什么很可怕? 一、恐怖的来源 恐怖的来源:美学概念。思想对安全的认识,映射到美学领域,转化为美和丑。恐怖,是一种精心掩饰的丑陋。二、桑尼与C3PO 桑尼更接近于人,为什么没有陷入更深的谷底,因为桑尼更靠近表观的美学,而表观的美学却真正的代表了 内心的安全。原创 2016-05-31 13:26:18 · 1976 阅读 · 0 评论 -
人工机器:基于视觉的机械手控制
《机器人学、机器视觉与控制》一书中,第五部分开始,第15章之前——基于视觉的控制,第442页这样写到。 第二个问题:确保机器人能达到一个期望的位姿,也不是一个简单的事情。正如我们在第七章讨论的那样,机器人末端执行器要通过计算要求的关节角度才能向一个位姿运动。这就要求机器人的运动模型是准确的,它反过来就要要求机器人的加工精度必须非常高:连杆长度必须准确,关节轴之间...翻译 2018-05-10 10:57:03 · 5087 阅读 · 0 评论 -
个人技术博客的选择:CSDN、博客园、简书、知乎专栏还是Github Page?
文章链接:个人技术博客的选择:CSDN、博客园、简书、知乎专栏还是Github Page? 感觉还是Fuck The Dog!看来还是以后把文章写在本地,然后再上传到CSDN吧。被CSDN的缓存机制坑了几次,得非常注意这次事件才行!!!...转载 2018-06-19 17:21:50 · 4790 阅读 · 0 评论 -
人工机器:人工智能中的机器学习方法
人工智能的定义为基于表观的行为定义,即图灵测试,可以形式化为模式识别。智能从知识论的角度分析,归纳明确知识规则构建知识图谱系统形成专家系统,而通过数据获得归纳规则约束参数为机器学习系统,即基于数据的模式识别系统。大量的机器学习模型,可以抽象为特定形式的神经网络,处理输入数据为定长输入或者变长输入。可处理变长数据的NN代表为RNN-循环神经网络。 知识系统应用于现实...翻译 2018-12-06 15:44:13 · 2997 阅读 · 0 评论 -
人工机器:jetbot小车密码
在测试完jetson nano的开发板之后,烧录jetbot到SD卡。开机之后发现有密码,一时惊呆了。经过查询,jetbot的密码为:jetbot遵循这个教程,步骤详细:玩转JetBot自动驾驶 (三)系统安装与配置;其他参考:【转载】NVIDIA Jetson Nano從入手到安裝系統、開機與遠端連線过程:1. 组装jetson nano 和jetson bot;...原创 2019-10-07 16:15:45 · 1913 阅读 · 0 评论 -
ROS:ubuntuKylin17.04-Ros使用OrbSLAM2
忙于图像处理和DCNN,很长时间不使用ROS,重新安装系统后,再次使用ORB-SLAM2(ROS)进行三维重建和实时追踪的演示。 参考以前的文章:ROS:ubuntu-Ros使用OrbSLAMORB-SLAM2(ROS)的GitHub链接: raulmur的主页:https://github.com/raulmur/ORB-SLAM2使用...翻译 2017-05-16 11:37:45 · 977 阅读 · 1 评论 -
AI:狄拉克之海上的涟漪
延陵季子2011年 8月27日 19:02 借鉴英文原文:Ripples in the Dirac Sea 当他试着用一种轻松的口吻诉说一些事情时,我会明白,其实我们都明白,在他的心里绝对不是平静,而是难以平复的涟漪。即使如波浪般翻滚的情绪,总是被他压制,在一个如胸怀宽广的海洋里,再大的风浪也只是涟漪。 人类已经没有了界限,不过归根结底只是在享受前人的恩赐。没有争端,这里已经有所...原创 2017-03-18 17:27:08 · 1572 阅读 · 0 评论 -
三维重建:SLAM算法的考题总结
参考英文维基:https://en.wikipedia.org/wiki/Slam 。参考文档:视觉slam研究分析的一点认识一、四大简述1、请简单描述您对机器人的SLAM的概念理解?答: 机器人需要在自身位置不确定的条件下,在完全未知环境中创建地图, 同时利用地图进行自主定位和导航。这就是移动机器人的同时定位与地图创建(simultaneous localizatio...原创 2016-05-16 17:26:35 · 9029 阅读 · 4 评论 -
三维重建:SLAM的粒度和工程化问题
百度百科的定义。此文引用了其他博客的一些图像,如有侵权,邮件联系删除。 SLAM不是一个单一算法,是个工程。在计算机视觉中, 三维重建是指根据单视图或者多视图的图像重建三维信息的过程. 由于单视频的信息不完全,因此三维重建需要利用经验知识.。而多视图的三维重建(类似人的双目定位)相对比较容易, 其方法是先对摄像机进行标定, 即计算出摄像机的图象坐标系与世界坐标系的...原创 2019-04-14 11:33:47 · 6509 阅读 · 1 评论 -
BD、人脸识别、KATA、Gray码--程序员杂志文摘
Kata(路数练习)的思想就是通过反复练习来实践编码,在不断使用各种技能的过程中形成肌肉记忆。Kata从很多方面改善工作流程,比如编写测试、处理错误甚至编辑器的使用,更熟悉语言技巧。有人做过一转载 2013-12-20 20:09:10 · 1378 阅读 · 0 评论 -
ROS:Nvidia Jetson TK1平台安装使用ROS
原文连接: http://wiki.ros.org/indigo/Installation/UbuntuARMUbuntu ARM install of ROS IndigoThere are currently builds of ROS for Ubuntu Trusty armhf. These builds include most but not翻译 2016-06-23 17:53:04 · 3281 阅读 · 0 评论 -
End to End Sequence Labeling via Bi-directional LSTM CNNs CRF
来看看今日头条首席科学家的论文:End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF使用LSTM方法进行序列标注,完成大规模标注问题翻译 2017-05-09 11:54:46 · 2946 阅读 · 0 评论 -
DeepMind用ReinforcementLearning玩游戏
本文从图像级别进行游戏,跨过特征-规则-策略的显示分层,有一定的趣味性。说到机器学习最酷的分支,非Deep learning和Reinforcement learning莫属(以下分别简称DL和RL)。这两者不仅在实际应用中表现的很酷,在机器学习理论中也有不俗的表现。DeepMind 工作人员合两者之精髓,在Stella模拟机上让机器自己玩了7个Atari 2600的游戏,结果是玩的冲出美洲,走向世界,超越了物种的局限。不仅战胜了其他机器人,甚至在其中3个游戏中超越了人类游戏专家。转载 2015-01-05 17:05:37 · 1882 阅读 · 2 评论 -
人工机器:NDC-谷歌机器翻译破世界纪录,仅用Attention模型,无需CNN和RNN
NTM的成熟体DNC竟然达到了这种能力,不知道进化成完全体会是什么样子。竟然在机器翻译的准确率上超过了已经公布的所有模型,不愧是最接近现阶段最接近图灵机的有限图灵机。在数码宝贝中,我最喜欢的是阿和的加布兽进化的究极体数码宝贝——钢铁加鲁鲁,其使用的武器绝对冷冻气——就洋溢着极其欠揍的高冷味道。转载 2017-06-14 20:07:15 · 3475 阅读 · 1 评论 -
人工机器:作为归纳系统的深度学习
深度学习为深度神经网络机器学习。07年最先引起注目的是DNN,在语音识别上有突出的表现;深度CNN在机器视觉领域的超常表现引领模式识别领域科学界和工业界的潮流,基于图像数据本身的二维结构天然适合CNN处理;RNN对时序和变长数据的处理优势促使语音识别和视频分析又有较大发展;此外可应用于增强学习的新的深度网络形式可以完成游戏策略训练过程,提供端到端的 模型训练方式:DeepMind用...原创 2017-05-05 15:53:15 · 1076 阅读 · 0 评论 -
ES : 软件工程学的复杂度理论及物理学解释
系统论里面总是有一些通用的专业术语 比如复杂度、熵、焓,复杂度专门独立出来,成为复杂度理论 文章摘抄于:《非线性动力学》 刘秉政 编著 5.5 复杂性及其测度 热力学的几个专业术语 熵、焓、自由能、吉布斯自由能、复杂度 熵:体系混乱度(或无序度)的量度。S表示熵。也表示黑洞中不可用热量与其温度的比值。对于化学反...原创 2017-08-19 23:22:47 · 1170 阅读 · 0 评论 -
AI:模式识别的数学表示(集合—函数观点)
模式函数是一个从问题定义域到模式值域的一个单射。 从简单的贝叶斯方法,到只能支持二分类的原始支持向量机,到十几个类的分类上最好用的随机森林方法,到可以支持ImageNet上海量1860个类且分类精度极高的InceptionV4,其模式函数为 f( x ) = { X——>Y }|{ X = ImageNet的图片,Y={ 1860个类的标记 } } 是一个单射函数。原创 2017-07-07 18:24:10 · 4051 阅读 · 0 评论 -
三维重建:闭环检测-相机闭环
还是不要看了,高翔的科普读物已经出版了,读他的《slam十四讲》就可以了。 ORB_SLAM整个工程中冗长的数据关联策略使分析起来非常困难,闭环检测作为整个优化误差策略的方法并未得到显而易见的效果 三维重建过程中,滤波方法可以看做是一种追踪方法。EM方法的长期使用造成在相对整个世界坐标系中累计误差的指数级增长。若是检测到可信的闭环,闭...原创 2017-03-30 17:48:21 · 3891 阅读 · 0 评论 -
Christopher G. Atkeson 简介
有一个事实:双足机器人的稳定性问题单靠算法是搞不定的!!! 在2015 DARPA 机器人挑战赛中,许多参赛团队的机器人使用了Atlas,他们通过安装他们自己的软件并修改来让机器人保持平衡。来自WPI-CMU的阿特拉斯机器人Warner是诸多Atlas中唯一一个没有摔倒或需要重启的机器人。在决赛的两次尝试中,他们都成功走到最后,拿下八分中的七分。这样优异表现的背后,是CMU机原创 2016-05-30 13:31:00 · 1090 阅读 · 0 评论